
D3.7 Citizen Direct Feedback

1 | P a g e

© Copyright <2019> <ANO>

D3.7 Citizen Direct Feedback

Release Notes

Project acronym: FLOOD-serv

Project full title: Public FLOOD Emergency
and Awareness SERvice

Grant agreement no.: 693599
Responsible: ANO
Contributors: Pedro Leite, Sergio Almeida
Document Reference: D3.7
Dissemination Level: PU
Version: 1.7
Date: 02/12/19

D3.7 Citizen Direct Feedback

2 | P a g e

© Copyright <2019> <ANO>

History

Version Date Modification reason Modified by

0.1 03/01/2017 Initial draft: structure of
contents Pedro Leite

0.2 27/01/2017 Overall content Pedro Leite

0.3 29/01/2017 Final content and revision Pedro Leite

Final 29/01/2017 Final content and revision Pedro Leite

1.1 20/11/2019 Revision after feedback from
EC Pedro Leite

1.2 21/11/2019
Chapters 2, 3, 4 and 5 -
reviewed, updated and
complemented

Pedro Leite

1.3 22/11/2019

Chapter 6 – reviewed, updated
and complemented test cases
and results

Chapter 7 – updated release
notes and links

Pedro Leite

1.4 29/11/2019

Chapter 4 – tech specs added

Chapter 9 and appendix I
added

Total Number of chapters
changed

Changes in Response to Final
Review added

Pedro Leite

1.5 29/11/2019 1.3 Changes in Response to
Final Review updated Pedro Leite

1.6 29/11/2019 1.3 Changes in Response to
Final Review updated Pedro Leite

D3.7 Citizen Direct Feedback

3 | P a g e

© Copyright <2019> <ANO>

1.7 02/11/2019
Added references to user
guide in Chapter 11 – Appendix
II

Pedro Leite

D3.7 Citizen Direct Feedback

4 | P a g e

© Copyright <2019> <ANO>

Table of contents

1 Introduction ... 11
1.1 Purpose of the Document ... 11
1.2 Structure of the Document ... 11

1.3 Changes in Response to Final Review ... 11
3 Overview of user stories implemented.. 16
4 Technical Specifications .. 22
5 System Test Case Repository... 24

5.1 System Tests .. 24

5.2 Baseline for System Tests - Preconditions... 24
6 Test cases – overview ... 27
7 Test Cases and Results .. 28

7.1 Data Collection – Test Cases and Results .. 28

7.1.1 Test Case – Logon to App .. 28

7.1.2 Results – Logon to App .. 28
7.1.3 Test Case – Send alert via mobile app... 30

7.1.4 Results – Send alert via mobile app... 30
7.1.5 Test Case – Send Damage Report.. 33

7.1.6 Results – Send Damage Report ... 34
7.1.7 Test Case – Registration via mobile application.. 36

7.1.8 Results – Registration via mobile application.. 37
7.1.9 Test Case – Filter alerts and communications... 38

7.1.10 Results – Filter alerts and communications... 39

7.1.11 Test Case – Process alert, communication or damage report........................... 39
7.1.12 Results – Process alert, communication or damage report 40

7.1.13 Test Case – Certification of citizen .. 44
7.1.14 Results – Certification of citizen .. 44

7.1.15 Test Case – Define Smart Form ... 45
7.1.16 Results – Define Smart Form ... 45

7.1.17 Test Case – Send Broadcast emergency .. 47

7.1.18 Results – Send Broadcast emergency.. 47
7.1.19 Test Case – Receive Broadcast emergency ... 49

7.1.20 Receive Broadcast emergency... 49
7.1.21 Test Case – Check alert or communcation status ... 51

7.1.22 Results – Check alert or communcation status ... 51
7.1.23 Test Case – Call WS Rest API.. 54

D3.7 Citizen Direct Feedback

5 | P a g e

© Copyright <2019> <ANO>

7.1.24 Results – Call WS Rest API ... 54
8 CDF Release Notes .. 55

8.1 System access requirements ... 55
8.2 Features... 55

8.3 Installation guide ... 55
9 Work Developed and Conclusions ... 57

D3.7 Citizen Direct Feedback

6 | P a g e

© Copyright <2019> <ANO>

List of figures

D3.7 Citizen Direct Feedback

7 | P a g e

© Copyright <2019> <ANO>

List of tables

Table 1 Naming Conventions Industry Standards...9

D3.7 Citizen Direct Feedback

8 | P a g e

© Copyright <2019> <ANO>

List of abbreviations

<Abbreviation> <Explanation>

CDF Citizen Direct Feedback

EMC Emergency Management Console

SW Semantic Wiki

TMS Territory Monitoring System

DM Decision Maker

F Facilitator

FE Flood Emergency Expert

ER Emergency Responder

SMC Social Media Component

JSON JavaScript Object Notation

D3.7 Citizen Direct Feedback

9 | P a g e

© Copyright <2019> <ANO>

Naming Conventions and Terminology

Naming
Domain Standard Examples Link

Agile
Development SCRUM Epic, theme,

user story http://www.scrumguides.org/

Requirements IREB
Use case, non-
functional
requirements

https://www.ireb.org/content/downloads/1-
cpre-glossary/ireb_cpre_glossary_16_en.pdf

QA ISTQB

System test,
unit test,
integration
test, defect

http://www.istqb.org/downloads/

glossary.html

Table 1 Naming Conventions Industry Standards

D3.7 Citizen Direct Feedback

10 | P a g e

© Copyright <2019> <ANO>

Executive summary

D3.7 Citizen Direct Feedback is the seventh deliverable from WP3. This is a software deliverable
about development of the CDF tool.

The CDF development is based on the D3.2 document, which deals with the functional
specifications through the definition of the user stories for each component composing the
FLOOD-serv platform and the description of the technical specification of each component:
structure, data model, interfaces, services, data providers and implementation environment.

D3.7 is being developed at the same time as D3.3, D3.4, D3.5, and D3.6, which are reporting
the development of the rest of components composing the FLOOD-serv platform, i.e.: the
Social media component (SMC), the Emergency Management Console (EMC), the Semantic
Wiki (SW), and the Territory Monitoring System (TMS), respectively.

D3.7 Citizen Direct Feedback

11 | P a g e

© Copyright <2019> <ANO>

1 Introduction

1.1 Purpose of the Document

The goal of this document is to provide the release notes for the Citizen Direct Feedback. The
document is based on D3.1 and D3.2.

1.2 Structure of the Document

The document is organized as in the following:

 Chapter one: Introduction
 Chapter two: Overall approach and methodology
 Chapter three: Overview of user stories implemented
 Chapter four: Technical specifications
 Chapter five: System test case repository
 Chapter six: Test cases overview
 Chapter seven: Test cases and results
 Chapter eight: Release notes
 Chapter nine. Work developed and Conclusions
 Chapter ten: Appendix I – API Doc

For the reference, before the Changes in Response to Final Review, the document was
organized:

 Chapter one: Introduction
 Chapter two: Overall approach and methodology
 Chapter three: Overview of user stories implemented
 Chapter four: System test case repository
 Chapter five: Test cases overview
 Chapter six: Test cases and results
 Chapter seven: Release notes

1.3 Changes in Response to Final Review

Observations Actions and Changes

It is unclear what exactly was achieved
under the WP3 in the areas of the
Territory Monitoring System and
Citizen Direct Feedback components.

All the user stories previously identified were
implemented with success and the component is up
and running and fully integrated in the system. To
underline this, the chapters with the user stories
implemented – chapter 3 was updated, Chapter 4 –
Tech Specs was added, Chapter 6 and Chapter 7 for
the test cases and results was updated, chapter 8 with
release notes was updated with the currently working
links for all 5 pilots, chapter 9 with work developed
and conclusions was added, Appendix I was added.

D3.7 Citizen Direct Feedback

12 | P a g e

© Copyright <2019> <ANO>

The CDF is essential for the objective of the Project to
be citizen-centric and to have a two-way
communication with citizens. CDF enables the receipt
and systematic processing of feedback from citizens
(by the use of the CDF Mobile App or the FLOOD-serv
Portal), in the CDF back office interface, public
administrators, assess information from citizens, send
it for further processing for issue resolution and
communicate with citizens:

 Filter and process any incoming issue
reported via app or portal;

 A Workflow management system for proper
address the issues automatically register;

o Allowing the public authority to give
feedback to the citizen;

 Broadcasting messaging tool with sms
integration;

 P2P messaging tool with sms integration;

 Build a database of issues with workflow
capabilities and with integration API for the
Portal and the EMC;

 Build a database of entities/citizens;

 Build smart forms for dedicated workflows
and publish them on the Portal via API;

o This allows more formal
communications and process flows
between citizens and the public
authorities.

 Allow the public authority to setup the
application and workflows as desired with full
customization;

The CDF also allows sending mass messages/alerts to
citizens via the Mobile App.

more substantial description of the
content of listed components should be
provided in the Deliverables D3.3, D3.5
- D3.7 accordingly to the remarks of the
present report and its Annex 1 -
Deliverables due for the Period 2/Final
review.

The whole document was revised and more details
was added: the chapters with the user stories
implemented – chapter 3 was updated, Chapter 4 –
Tech Specs was added, Chapter 6 and Chapter 7 for
the test cases and results was updated, chapter 8 with
release notes was updated with the currently working
links for all 5 pilots, chapter 9 with work developed
and conclusions was added, Appendix I was added.

D3.7 Citizen Direct Feedback

13 | P a g e

© Copyright <2019> <ANO>

The document content is not of sufficient
quality as provided user cases are very
basic, sometimes unrealistic. For example,
examples of messages/broadcasts (6.1.16
Results – Send Broadcast emergency) are of
little usefulness for the emergency actors as
no information on the location and type of
flood (river overflow, dike breach,
percolation, ...) is provided. Duoro river is
900 km long and at least geographical
coordinates of the emitted and validated
messages should be an integral part of the
broadcast content.

The whole document was revised and more details
was added – more relevant for this point the
updated user stories: the chapters with the user
stories implemented – chapter 3 was updated,
Chapter 4 – Tech Specs was added, Chapter 6 and
Chapter 7 for the test cases and results was updated,
chapter 8 with release notes was updated with the
currently working links for all 5 pilots, chapter 9 with
work developed and conclusions was added,
Appendix I was added.

Answering the specific issue raised – messages with
location - we don’t need to use “location” for
filtering because, CDF App is instantiated for the
city/town where those people live, not for a whole
region. Only people in that city who have installed
the App receive messages. Detailed information
about location of the event can be issued in text. The
broadcast message intends to be a quick and agile
means of alerting citizens of a specific city (instance of
the FLOOD-Serv for Genova for example), of an
emergency occurrence or any other event the
authorities deem fit. So, location does not apply as a
mandatory information – nevertheless it can include
for another functional context in a future iteration. In
contrast, the tickets sent by the citizens via the CDF
app or Portal, automatically or manually share the
location of the issue, because this is a vital piece of
information for the public authority, to further
process and cross check.

The document lacks conclusions with respect
to compliance of the developed component
with the technical specifications (D3.2)

The whole document was revised and more details
was added – more relevant for this point chapter 9
was added, chapter 3 was updated, as chapter 7 with
more details on the test cases. The release notes were
also updated.

In addition, the information on accessing the
software is erroneous as the access link
http://flood-serv.ano.demos.pt/ to this API is
not working in August 2019 what does not
allow an external potential user for
practising with the developed component.

The demo environment, originally referenced in the
document was out of commission. The updated links
are provided in Chapter 8 – release notes, chapter 4
added and appendix I with the API Docs

Updated links:

For Decision Makers and/or Operators you can access
to the CDF Backoffice directly in the FLOOD-Serv
Platform or directly by typing in:

D3.7 Citizen Direct Feedback

14 | P a g e

© Copyright <2019> <ANO>

https://bilbao-floodserv-saas.ano.pt/

https://bratislava-floodserv-saas.ano.pt/

https://genova-floodserv-saas.ano.pt/

https://tulcea-floodserv-saas.ano.pt/

https://vnfamalicao-floodserv-saas.ano.pt/

The credentials to access are:

• User: salmeida123

• Password: 123

To access to the CDF mobile app for Citizens:

You can download it directly via the FLOOD-Serv
Platform or using the direct link:

https://tulcea-floodserv-
saas.ano.pt/tulcea/images/FLOODserv_1.0.0.4-
tulcea.apk

https://bilbao-floodserv-
saas.ano.pt/bilbao/images/FLOODserv_1.0.0.4-
bilbao.apk

https://genova-floodserv-
saas.ano.pt/genova/images/FLOODserv_1.0.0.4-
genova.apk

https://bratislava-floodserv-
saas.ano.pt/bratislava/images/FLOODserv_1.0.0.4-
bratislava.apk

https://vnfamalicao-floodserv-
saas.ano.pt/vnfamalicao/images/FLOODserv_1.0.0.4-
vnfamalicao.apk

D4.4 It is also unclear how CDF, which
creates time and space distributed
information, can provide a support in the
decision-making process, without a layer of
data fusion, cross-validation and knowledge
data base for a return of experience.

The whole document was revised and more details
was added – more relevant for this point chapter 7
was fully updated and chapter 4 with the tech specs
added. The data collected by the CDF (as TMS and
SMC) should be collected to the platform and EMC as
these are the system’s optimum locations for cross
validation and ultimate analysis and decision making.
The main goal is to collect issues and return feedback.

D3.7 Citizen Direct Feedback

15 | P a g e

© Copyright <2019> <ANO>

2 Overall approach and methodology

The tests described in this document demonstrate that the CDF component (D3.7) has been
successfully implemented in all languages and the new features identified in D3.1 and D3.2
have been implemented.

As the next steps integration tests will be implemented as part of WP4

WP5 is about user acceptance tests, which is the last phase of a software testing process.
During UAT (User Acceptance Testing), actual software users test the software to make sure
that it works in real-world scenarios, according to specifications.

The overall approach applied is SCRUM, consequently the results and documentation the
software delivered in D3.7 was following the sprints and user stories implemented.

In SCRUM the tasks are divided into time boxes (small time frames) to deliver specific features
in the release so that the working software build can be delivered after each iteration. Builds
are incremental in terms of features; the final build of D3.7 has all the features.

Test types and coverage

The tests cover the functionality of the CDF component only.

The integration tests performed was the CDF REST API, through various calls to the API.

Role of the tester

 Ensure End-user satisfaction through delivery of high-quality software.

 Engagement is early during the project from sprint planning.

 Discuss and understand each user story and then decide on acceptance criteria for the
same.

 Define activities for themselves to estimate time, updating test cases as and when
changes appear, complete testing within the sprint time etc.

 Develop test cases as per the story acceptance criteria and change whenever there is
a change in story.

 Deliver high quality software iteratively from a couple of weeks to a couple of months.

 Ensure user stories get clarified where there is insufficient information.

 Break user stories into different testing tasks.

 Decide each story test coverage

D3.7 Citizen Direct Feedback

16 | P a g e

© Copyright <2019> <ANO>

3 Overview of user stories implemented

The main goal of the CDF is to provide a two-way communication between citizens and the public authorities currently using the FLOOD-Serv platform. For
Citizens a mobile application was created for easy usage and an API that will implement smart forms to be used by the main portal - these are the frontoffice.
For the public authorities, a web backoffice was created to:

 Filter and process any incoming issue reported via app or portal;

 A Workflow management system for proper address the issues automatically register;

o Allowing the public authority to give feedback to the citizen;

 Broadcasting messaging tool with sms integration;

 P2P messaging tool with sms integration;

 Build a database of issues with workflow capabilities and with integration API for the Portal and the EMC;

 Build a database of entities/citizens;

 Build smart forms for dedicated workflows and publish them on the Portal via API;

o This allows more formal communications and process flows between citizens and the public authorities.

 Allow the public authority to setup the application and workflows as desired with full customization;

The user stories implemented to accomplish with the non-functional, functional and technical requirements of the CDF are collected in the following table. To
consider the CDF as totally finished, the 8 user stories collected in this table (from USCDF1 to USCDF8) have also to be implemented.

D3.7 Citizen Direct Feedback

17 | P a g e

© Copyright <2019> <ANO>

ID Summary Description
USCDF1 Communicate early flood signs As eCitizen or Certified Citizen/Observer I want to warn the authorities of a potential flood

risk.

Acceptance criteria:

1) Users can send information about a potential flood risk: Title and Text Description,

2) Users can send automatically geo coordinates of their location or the occurrence (Share
current location or specify address)

3) Users can also send photo or video about the occurrence;

4) If defined as a Certified Observe, the issue will can be treated as high risk and thus not
pass through the filter stage;

5) Send the alert via the web platform or mobile app.

USCDF2

Filter citizen communications

As a facilitator or flood emergency expert I want to be able to filter occurrences reported
by eCitizens and Certified Citizens/Observers.

Acceptance criteria:

1) Users can filter citizen communications on a specific area;

2) Can search based on criteria;

3) Can search history of occurrences;

4) Can verify the trustiness of the alerts and define trusted users.

D3.7 Citizen Direct Feedback

18 | P a g e

© Copyright <2019> <ANO>

USCDF3

Broadcast emergency information

As a facilitator or flood emergency expert I want to communicate to all registered users
on important information about a specific event.

Acceptance criteria:

1) Users can send a broadcast message to all the users via portal, mobile application
and/or SMS;

2) Filter user base for broadcast;

3) Citizens receive SMS or alert via mobile application.

USCDF4

Follow-up on specific issues

As an eCitizen or Certified Citizen/Observer I want to be able to check the actions taken
on a specific matter previously reported on the platform.

Acceptance criteria:

1) Users can check the status and actions on a specific matter;

2) Can search based on criteria for issues;

3) Can get details on those actions.

D3.7 Citizen Direct Feedback

19 | P a g e

© Copyright <2019> <ANO>

USCDF5

Official Requests for damage control and other
more formal communications

As an eCitizen, I want to be able to report damages related to a flood occurrence to the
authorities, through the FLOOD-Serv platform.

Acceptance criteria:

1) Users can report on damages using a simple form online;

2) they can attach documents and other files, as pre-defined by the organization using the
platform;

3) The citizen will receive a receipt as proof of the report;

4) The citizen can check the status of the report;

5) The authorities will be able to process the reports sent by citizens and process them
internally;

6) The authorities will be able to report on the status of the issue for the original reporter;

D3.7 Citizen Direct Feedback

20 | P a g e

© Copyright <2019> <ANO>

USCDF6

Registration via mobile application

As an eCitizen or Certified Citizen/Observer I want to register in the Flood-Serv platform
via the mobile application without accessing the online portal.

Acceptance criteria:

1) Users provide the basic user information;

2) They receive a confirmation email of the registration

3) They can then access the portal and mobile application

USCDF7

Certification of Certified Observers

As a facilitator or flood emergency expert I want to certify a registered user as a certified
observer.

Acceptance criteria:

1) User will check the profile of the citizen

2) Will check the user as certified observer

3) The citizen will then be granted all the functionalities associated with the role Certified
Observer.

D3.7 Citizen Direct Feedback

21 | P a g e

© Copyright <2019> <ANO>

USCDF8

Definition of Smart Forms for Formal
Communications

As a facilitator or flood emergency expert I want to define smart forms to enable citizens
to interact with the organization in a more formal manner

Acceptance criteria:

1) Users can define the theme associated

2) Users can define the fields need for the form

3) Users can define attachments needed to the form

4) Users can publish the form

5) Users can alter the details of the Form

The CDF backoffice is accessible via web for:

 Decision Makers
 Facilitator/Flood Expert
 Emergency Responders
 System Operator

The CDF frontoffice is accessible via dedicated app or via integration with the portal:

 Citizens

D3.4 Citizen Direct Feedback

22 | P a g e
© Copyright <2019> <ANO>

4 Technical Specifications
The CDF component is a service-oriented application with a multi-layer perspective. The
architecture of the CDF was designed taking in account the industries best practices allowing
scalability, modularity and code efficiency. The various layers allow that data, logic, API
and graphical user interfaces are separated and that can be managed separately.

Like the figure shows, each layer is designed to be scalable and with interoperability as a
principal mindset. As CDF is at the same time, data silo, web backoffice, web frontoffice via
integration with the FlOOD-Serv Portal and mobile application, its API is a core feature and it
was developed specifically for the project.

The macro technology stack that support these layers are:

 Logger
 Log4j
 Data
 Java and Hibernate
 Business Works
 Java
 Spring
 Spring Security
 API
 Jersey
 UI
 Backoffice

D3.7 Citizen Direct Feedback

23 | P a g e

© Copyright <2019> <ANO>

 JSF
 Primefaces
 Mobile
 Android SDK

In terms of infrastructure, the CDF is supported by a series of virtualized servers (using
VMware vSphere Hypervisor (ESXi)):

 Underline OS for each virtual machine: CentOS 6.X
 Database: Oracle DB 11g
 Java Server: Glassfish 5

D3.7 Citizen Direct Feedback

24 | P a g e

© Copyright <2019> <ANO>

5 System Test Case Repository
This chapter provides an overview of the current system tests.

The tests described in this document demonstrates that the Citizen Direct Feedback is
implemented in all languages and the features identified in D3.1 and D3.2 have been
successfully implemented as part of the task T3.9.

5.1 System Tests

The core focus of the system tests is to test the Citizen Direct Feedback component - without
integration with the other modules - as a black box as seen by the user. This test level is being
performed by dedicated experts (testers, test manager).

WP5 is about user acceptance tests, which is the last phase of a software testing process.
During UAT (User Acceptance Testing), actual software users test the software to make sure
that it works in real-world scenarios, according to specifications.

5.2 Baseline for System Tests - Preconditions

In order to extract reproduceable and consistent results from executing the system tests they
must be performed in a defined environment. Besides system level requirements (database is
up and running), there are other internal settings that must be set accordingly. These settings
are called preconditions and this chapter lists some of the most relevant ones which are present
in most of the verification tests.

Id Title Setup

PRE 1 Activated
Facilitator

 client exists
 user with facilitator role has been added by the

FLOOD-serv platform
 password for facilitator has been set

PRE 2 Activated Flood
Expert

 client exists
 user with flood expert role has been added by

the FLOOD-serv platform
 password for flood expert has been set

PRE 3 Activated Decision
Maker

 client exists
 user with decision maker role has been added by

the FLOOD-serv platform
 password for decision maker has been set

PRE 4 Activated
Emergency
Responder

 client exists
 user with emergency responder role has been

added by the system operator
 password for emergency responder has been set

D3.7 Citizen Direct Feedback

25 | P a g e

© Copyright <2019> <ANO>

PRE 5 Activated eCitizen client exists
 user with eCitizen role has been registered into

the system
 password for eCitizen has been set

D3.7 Citizen Direct Feedback

26 | P a g e

© Copyright <2019> <ANO>

D3.4 Citizen Direct Feedback

27 | P a g e
© Copyright <2019> <ANO>

6 Test cases – overview
We have grouped the tests carried out into clusters: such related to citizen input, alters and requests treatment and citizen feedback.

Italian Version Portuguese
Version

Romanian
Version

Slovakian
Version

Spanish Version

Citizen Input

Logon to App X X X X X

Send alert via mobile app X X X X X

Send Damage Report X X X X X

Registration via mobile application X X X X X

Alerts and requests Treatment

Filter alerts and communications X X X X X

Process alert, communication or damage report X X X X X

Certification of citizen X X X X X

Define Smart Form X X X X X

Citizen Feedback

Send Broadcast emergency X X X X X

Receive Broadcast emergency X X X X X

Check alert or communcation status X X X X X

WS Rest API X X X X X

D3.7 Citizen Direct Feedback

28 | P a g e

© Copyright <2019> <ANO>

7 Test Cases and Results

7.1 Data Collection – Test Cases and Results

7.1.1 Test Case – Logon to App

Logon to App

Test Type: Manual

Status: Final

Preconditions: PRE 5 – Activated eCitizen
 eCitizen has mobile application installed and registered

Steps to

complete:

1. The eCitizen accesses and logs on to the mobile application

Expected

Outcome:

1. The eCitizen is able to log on to the application for further
usage

7.1.2 Results – Logon to App

Login screen upon opening the app.

D3.7 Citizen Direct Feedback

29 | P a g e

© Copyright <2019> <ANO>

User and password input

Access to main menu granted

D3.7 Citizen Direct Feedback

30 | P a g e

© Copyright <2019> <ANO>

7.1.3 Test Case – Send alert via mobile app

Send alert via mobile app

Test Type: Manual

Status: Final

Preconditions: PRE 5 – Activated eCitizen
 eCitizen has mobile application installed is registered

Steps to

complete:

1. The eCitizen registers information to send
1. Title and Description
2. Can add photo or video
3. Can share location

2. Sends information to the platform

Expected

Outcome:

1. The eCitizen is able report an alert or ticked to the platform

7.1.4 Results – Send alert via mobile app

Select “Report issue” on the main menu

D3.7 Citizen Direct Feedback

31 | P a g e

© Copyright <2019> <ANO>

Fill in the request information

Share automatically the location or select manually

D3.7 Citizen Direct Feedback

32 | P a g e

© Copyright <2019> <ANO>

Click “Submit”

Submitting…

D3.7 Citizen Direct Feedback

33 | P a g e

© Copyright <2019> <ANO>

Report submitted

7.1.5 Test Case – Send Damage Report

Send Damage Report

Test Type: Manual

Status: Final

Preconditions: PRE 5 – Activated eCitizen

eCitizen has mobile application installed is registered

Steps to

complete:
1. eCitizen can report on damages using a smart form online;
2. eCitizen can attach documents and other files, as pre-

defined by the organization using the platform;
3. eCitizen will receive a receipt as proof of the report;
4. eCitizen can after check the status of the report;
5. The issue will be registered in the Backoffice for further

processing

Expected

Outcome:

2. The eCitizen is able report a damage that can be processed
by the platform operator and receive feedback on it

D3.7 Citizen Direct Feedback

34 | P a g e

© Copyright <2019> <ANO>

7.1.6 Results – Send Damage Report

D3.7 Citizen Direct Feedback

35 | P a g e

© Copyright <2019> <ANO>

For this test, a dummy UI was created using angular-js. This proved the corrected of the
underline API that will be used by the Portal. The created issue will appear on the backoffice of

the CDF for further processing.

D3.7 Citizen Direct Feedback

36 | P a g e

© Copyright <2019> <ANO>

This is the implemented version on the portal.

7.1.7 Test Case – Registration via mobile application

Filter alerts and communications

Test Type: Manual

Status: Final

Preconditions: Application installed for eCitizen

Steps to

complete:

1. eCitizen accesses application
2. Clicks to register
3. Fills in registration form
4. Submits form
5. Receives confirmation

Expected

Outcome:

3. eCitizen Registered and able to login

D3.7 Citizen Direct Feedback

37 | P a g e

© Copyright <2019> <ANO>

7.1.8 Results – Registration via mobile application

Form to register new user

D3.7 Citizen Direct Feedback

38 | P a g e

© Copyright <2019> <ANO>

Account created successfully and user is able to login

7.1.9 Test Case – Filter alerts and communications

Filter alerts and communications

Test Type: Manual

Status: Final

Preconditions: PRE 1 - Activated Facilitator (Platform operator)

Steps to

complete:

6. Platform operator can filter citizen communications on a
specific area;

7. Platform operator can search based on criteria;
8. Platform operator can search history of occurrences;

Expected

Outcome:

4. The Platform operator is able to filter, accept or reject
alerts reported by eCitizens

D3.7 Citizen Direct Feedback

39 | P a g e

© Copyright <2019> <ANO>

7.1.10 Results – Filter alerts and communications

The PO can access the dedicated area to process the received alerts

The user can the search fields and filter buttons to search for specific issues

7.1.11 Test Case – Process alert, communication or damage report

Process alert, communication or damage report

Test Type: Manual

Status: Final

Preconditions: PRE 1 - Activated Facilitator (Platform operator)

Steps to

complete:

1. After validating the details, the Platform operator can approve
the alert for further approval within the organization – click
create entry

2. Will be redirected automatically to the ticket register area and
the ticked will be registered automatically

D3.7 Citizen Direct Feedback

40 | P a g e

© Copyright <2019> <ANO>

3. Can provide more information on the ticked
4. Can then forward the ticked to another department/user for

further processing
5. It will appear on the todo lisk, to where the ticked was sent
6. Can then be forward, following a free flow workflow
7. More information can be added and more documents attached
8. Platform operator can give feedback or official position on the

ticket
9. The ticket can at any point be archived
10. Platform operator can also reject the alert

Expected

Outcome:

1. The Platform operator is send an alert for approval
respecting and workflow and receive feedback from other
departments

2. The citizen

7.1.12 Results – Process alert, communication or damage report

Click create entry to approve and register the ticket.

D3.7 Citizen Direct Feedback

41 | P a g e

© Copyright <2019> <ANO>

All the information from the issue will automatically flow to the ticket, including the
attachments. A unique number is assigned. Further information and attachments can be
added.

After, the ticket can be forwarded to another department/user for further analysis.

D3.7 Citizen Direct Feedback

42 | P a g e

© Copyright <2019> <ANO>

It will appear on the todo lisk, to where the ticked was sent

Can then be forward, following a free flow workflow. More information can be added and
more documents attached. Platform operator can give feedback or official position on the

ticket

D3.7 Citizen Direct Feedback

43 | P a g e

© Copyright <2019> <ANO>

The ticket can at any point be archived.

D3.7 Citizen Direct Feedback

44 | P a g e

© Copyright <2019> <ANO>

Platform operator can also reject the alert

7.1.13 Test Case – Certification of citizen

Certification of citizen

Test Type: Manual

Status: Final

Preconditions: PRE 1 - Activated Facilitator (Platform operator)
 PRE 5 – Activated eCitizen
 eCitizen has mobile application installed

Steps to

complete:

1. Platform operator will check the profile of the eCitizen –
(via Base Data one the main menu or on the entity tab
within the web requests screen – where the alerts are
processed)

2. Will check the user as certified observer
3. The citizen will then be granted all the privileges associated

with the role Certified Observer.

Expected

Outcome:

1. The Platform operator is able to check and certify eCitizen
registered user

7.1.14 Results – Certification of citizen

D3.7 Citizen Direct Feedback

45 | P a g e

© Copyright <2019> <ANO>

7.1.15 Test Case – Define Smart Form

Define Smart Form

Test Type: Manual

Status: Final

Preconditions: PRE 1 - Activated Facilitator (Platform operator)

Steps to

complete:

1. Platform Operator can define the theme associated –
Access via main menu “online Service” » “Base Data” »
“Forms”

2. Platform Operator can define the basic info, sections and
fields needed for the form

3. Platform Operator can define attachments needed to the
form

4. Platform Operator can publish the form
5. Platform Operator can alter the details of the Form

Expected

Outcome:

1. The Platform operator is able to define, alter, delete and
publish smart form

7.1.16 Results – Define Smart Form

D3.7 Citizen Direct Feedback

46 | P a g e

© Copyright <2019> <ANO>

D3.7 Citizen Direct Feedback

47 | P a g e

© Copyright <2019> <ANO>

Creating and publishing a smart, will allow to it be accessible via API, and thus can be shown
and used in the portal. This flexibility allows the public authorities to implement more agile or
formal processes within the platform.

7.1.17 Test Case – Send Broadcast emergency

Send Broadcast emergency

Test Type: Manual

Status: Final

Preconditions: PRE 1 - Activated Facilitator (Platform operator)
 PRE 5 – Activated eCitizen
 eCitizen has mobile application installed

Steps to

complete:

1. Platform Operator can define a new broadcast (sms or
message) message. Main Menu: “Online Service” » “Web
Messages”

2. Can send a broadcast message to eCitizens and emergency
responders

3. eCitizens will receive a push notification and a message in
the FLOOD-Serv app.

4. As an alternative, the message can be sent via SMS.
5. The PO can also send a message to a particular eCitizen.

This

Expected

Outcome:

1. The Platform operator is able send messages and broadcast
messages

2. The eCitizens receive the message via SMS, portal or app

7.1.18 Results – Send Broadcast emergency

D3.7 Citizen Direct Feedback

48 | P a g e

© Copyright <2019> <ANO>

The purpose of this feature is to have a simple and agile broadcast message sent to every
citizen

As an alternative, the message can be sent via SMS.

D3.7 Citizen Direct Feedback

49 | P a g e

© Copyright <2019> <ANO>

The purpose of this feature is to send a message to a particular citizen, thus allowing another
channel for a two-way communication. In the portal the citizen can send messages to the

public authority.

7.1.19 Test Case – Receive Broadcast emergency

Receive Broadcast emergency

Test Type: Manual

Status: Final

Preconditions: PRE 5 – Activated eCitizen
 eCitizen has mobile application installed

Steps to

complete:

1. PO Sends broadcast message

Expected

Outcome:

1. eCitizen receives message on mobile app and is notified via
push notification

7.1.20 Receive Broadcast emergency

D3.7 Citizen Direct Feedback

50 | P a g e

© Copyright <2019> <ANO>

The Citizen receives a push notification

Can check the history of messages

D3.7 Citizen Direct Feedback

51 | P a g e

© Copyright <2019> <ANO>

Clicking in the notification or via the broadcast messages area in the app, we can consult the
details of the message.

7.1.21 Test Case – Check alert or communcation status

Check alert or communcation status

Test Type: Manual

Status: Final

Preconditions: PRE 5 – Activated eCitizen
 eCitizen has mobile application installed

Steps to

complete:

1. eCitizen can check the status and actions on a specific
matter;

2. Can search based on criteria for issues, in the portal;
3. Can get details on those actions.

Expected

Outcome:

1. eCitizen can check status of reported issue or report

7.1.22 Results – Check alert or communcation status

D3.7 Citizen Direct Feedback

52 | P a g e

© Copyright <2019> <ANO>

List of reported issues in the app

Detail of reported issue with no feedback

D3.7 Citizen Direct Feedback

53 | P a g e

© Copyright <2019> <ANO>

Detail of reported issue with approved

List of reported issues in the portal

D3.7 Citizen Direct Feedback

54 | P a g e

© Copyright <2019> <ANO>

7.1.23 Test Case – Call WS Rest API

Call WS Rest API

Test Type: Automated/Manual

Status: Template

Preconditions: PRE 2 - Activated Facilitator
 API Available

Steps to

complete:

1. Open Browser
2. Call WS URL

Expected

outcome:

1. JSON file with response

7.1.24 Results – Call WS Rest API

Get All Themes

Get Forms by Theme

D3.7 Citizen Direct Feedback

55 | P a g e

© Copyright <2019> <ANO>

8 CDF Release Notes
This section contains the CDF release notes.

8.1 System access requirements

CDF can be accessible through any web browser in any device, doing it a multiplatform tool
available everywhere. The browser compatibility list is the next:

 Chrome 63+
 Firefox 57.0.4+
 Internet Explorer 10+

The mobile application is compatible with:

 Android 4.1+

8.2 Features

The CDF component a multi-platform system with these main functionalities:

 Filter and process any incoming issue reported via app or portal;

 A Workflow management system for proper address the issues automatically
registered;

o Allowing the public authority to give feedback to the citizen;

o Allowing the citizen to give continuous feedback;

 Broadcasting messaging tool with sms integration;

 P2P messaging tool with sms integration;

 Build a database of issues with workflow capabilities and with integration API for the
Portal and the EMC;

 Build a database of entities/citizens;

 Build smart forms for dedicated workflows and publish them on the Portal via API;

o This allows more formal communications and process flows between citizens
and the public authorities.

 Allow the public authority to setup the application and workflows as desired with full
customization;

8.3 Installation guide

For Decision Makers and/or Operators you can access to the CDF Backoffice directly in the
FLOOD-Serv Platform or directly by typing in:

https://bilbao-floodserv-saas.ano.pt/

https://bratislava-floodserv-saas.ano.pt/

D3.7 Citizen Direct Feedback

56 | P a g e

© Copyright <2019> <ANO>

https://genova-floodserv-saas.ano.pt/

https://tulcea-floodserv-saas.ano.pt/

https://vnfamalicao-floodserv-saas.ano.pt/

The credentials to access are:

 User: salmeida123
 Password: 123

Note: Since the PA can delete users, this user can at any point be deleted by the PA. If so, please refer directly to
the FLOOD-Serv platform to gain access.

To access to the CDF mobile app for Citizens:
You can download it directly via the FLOOD-Serv Platform or using the direct link:

https://tulcea-floodserv-saas.ano.pt/tulcea/images/FLOODserv_1.0.0.4-tulcea.apk

https://bilbao-floodserv-saas.ano.pt/bilbao/images/FLOODserv_1.0.0.4-bilbao.apk

https://genova-floodserv-saas.ano.pt/genova/images/FLOODserv_1.0.0.4-genova.apk

https://bratislava-floodserv-saas.ano.pt/bratislava/images/FLOODserv_1.0.0.4-bratislava.apk

https://vnfamalicao-floodserv-saas.ano.pt/vnfamalicao/images/FLOODserv_1.0.0.4-vnfamalicao.apk

Any verification tests described in this document can be repeated using such links, with the
possibility to change the language to verify that the application is running for the five
languages of the pilot cities and in English as well.

D3.7 Citizen Direct Feedback

57 | P a g e

© Copyright <2019> <ANO>

9 Work Developed and Conclusions

Regarding the CDF component, the 8 user stories were implemented, with all tests proving its
compliance with the original requirements. For this, the development consisted on (macro
level):

 Implementing the mobile application;
 Implementing the API to integrate with the platform – check Appendix I for more detail;
 Developing the Business Works layer to implement the new underline logic;
 Developing the Data layer to accommodate the new data structures.

The previous technology stack deemed fit for the changes and new modules incorporated.

Under the work developed in WP3, the CDF is ready to be integrated with the FLOOD-Serv
system. CDF is also currently being deployed separately for a different project.

D3.7 Citizen Direct Feedback

58 | P a g e

© Copyright <2019> <ANO>

10 APPENDIX I: API Documentation

10.1.1 Introduction

The following chapters identify the methods present in the three main areas of the CDF API.
For the URL, each pilot has its own CDF instance:

https://bilbao-floodserv-saas.ano.pt/

https://bratislava-floodserv-saas.ano.pt/

https://genova-floodserv-saas.ano.pt/

https://tulcea-floodserv-saas.ano.pt/

https://vnfamalicao-floodserv-saas.ano.pt/

For the API link, they obey the same logic:

https://{pilot_instance_name}/{pilot_contextroot_name}/services/api/records/

Pilot {pilot_instance_name} {pilot_contextroot_name}
Bilbao bilbao bilbao
Bratislava bratislava bratislava
Genova genova genova
Tulcea tulcea tulcea
Vila Nova
de
Famalicão

vnfamalicao vnfamalicao

For example, for the GetProcessesByDate of the STATES API, for Genova the link is:

https//genova-floodserv-saas.ano.pt/genova/services/api/records/getProcessesByDate/

10.1.2 SYNC Users

10.1.2.1 Sync Users

Link https://
{pilot_instance_name}/{pilot_contextroot_name}/services/api/floodserv/

Path sync

Method POST

Produces text/plain

D3.7 Citizen Direct Feedback

59 | P a g e

© Copyright <2019> <ANO>

Parameters
from headers

"Authorization":"Basic Auth”

“Username”: “USERWS”

“Password:” “floodserv123”

Return “OK”

10.1.3 STATES

10.1.3.1 Get a list of processes filtered by date of creation

Link https:// {pilot_instance_name}-floodserv-
saas.ano.pt/{pilot_contextroot_name}/services/api/records/

Path getProcessesByDate/{date}

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from path date => date in milliseconds

Return [

{

"id": <process identifier>,

"number": <process number>,

"year": <process year>,

"description": "<process description>",

"theme": "<process theme>",

"creationDate": "<date created in milliseconds>",

"processedBy": "<username>",

"status": "<process state>",

"entityRequester": "<entity name>"

},

…

]

10.1.3.2 Get the list of attachments of a specific process

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/attachments/

Path getAttachments/{id}

D3.7 Citizen Direct Feedback

60 | P a g e

© Copyright <2019> <ANO>

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from
path

id => process identifier

Return [

{

"id": <attachment identifier>,

"creationDate": "<date created in milliseconds>",

"name": "<file name>"

}

]

10.1.3.3 Get the last version of file of a specific attachment

Link https://{pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/attachments/

Path getFile/{id}

Method GET

Produces application/octet-stream

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from
path

id => attachment identifier

Return The file

10.1.3.4 Get the last version of file of a specific attachment (in base64)

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/attachments/

Path getFileBase64/{id}

Method GET

Produces application/json

D3.7 Citizen Direct Feedback

61 | P a g e

© Copyright <2019> <ANO>

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from
path

id => attachment identifier

Return {

“data”: “<base64 encoded file content>”

}

10.1.3.5 Get list of movements of a process

Link https://{pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/movements/

Path getMovementsByProcess/{id}

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from
path

id => process identifier

Return [

{

"id": <movement identifier>,

"number": <movement number,

"creationDate": "<date created in milliseconds>",

"userOrigin": "<origin user>",

"userDestination": "<destination user>",

"departmentOrigin": "<origin department>",

"departmentDestination": "<destination department>",

“resolutionDate”: “<resolution date in milliseconds>”,

“resolutionDescription”: “<resolution description>”

},

….

]

D3.7 Citizen Direct Feedback

62 | P a g e

© Copyright <2019> <ANO>

10.1.3.6 Update the status of a specific process

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/records/

Path updateState/{id}/{status}

Method POST

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from
path

id => process identifier

status => the new process state

Return A boolean indicating success or failure

10.1.3.7 Get a list of entities

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/persons/

Path getEntities

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Return [

{

"id": <entity identifier>,

"name": "<entity name>",

“number”: “<entity number>”

},

…

]

D3.7 Citizen Direct Feedback

63 | P a g e

© Copyright <2019> <ANO>

10.1.3.8 Get full details on a specific entity

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/persons/

Path getCompleteEntity/{id}

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from
path

id => entity identifier

Return {

“id”: “<entity identifier>”,

“name”: “<entity name>”,

“number”: “<entity number>”,

“email”: “<entity e-mail>”,

“phoneNumber”: “<entity phone number>”,

“birthday”: “<entity birth date in milliseconds>”,

“address”: {

“id”: “<address identifier>”,

“street”: “<street>”,

“district”: “<district>”,

“county”: “<county>”,

“town”: “<town>”,

“postalCode”: “<postalCode>”

}

}

10.1.3.9 Base Data

10.1.3.9.1Available process states

 R - Registry
 P - Pending
 A - Archived
 UA - Unarchived
 S - In follow-up
 DR- Draft

D3.7 Citizen Direct Feedback

64 | P a g e

© Copyright <2019> <ANO>

10.1.4 WEB REQUESTS

10.1.4.1 Login User

Link http://195.82.131.198/oauth2_server/public/index.php

Path api/login

Tip POST

Parameter from
body

email*

password*

Return "token_type"

"expires_in "

“access_token

10.1.4.2 Report Issue

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/

Path report

Method POST

Consumes multipart/form-data

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZ1dHVyZWRvYw==”

token => the Oauth2 access token

Parameters from
body

title => title of the issue

description => description of the issue

latitude => latitude (location)

longitude => longitude (location)

attachments => the images and videos, as a list of multipart
attachments named “attachment1”, “attachment2”, etc.

Return {

“newId”: “<internal ID of the created issue/request>”,

“state”: “SENT”

}

D3.7 Citizen Direct Feedback

65 | P a g e

© Copyright <2019> <ANO>

10.1.4.3 Get Issue State

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/

Path getState/{id}

Method GET

Produces application/json

Parameters from headers Authorization => “Basic VVNFUldTOmZ1dHVyZWRvYw==”

token => the Oauth2 access token

Parameters from query Id => internal ID of the issue/request

Return {

“state”: “<state of the request>”,

“processNumberDisplay”: “<created process number display>”,

“stateMessageId”: “<string ID of the state of the request for Android>”,

“resolutionMessageId”: “<string iD of the resolution for Android>”,

“resolutionDate”: “<resolution date (number of milliseconds since
January 1, 1970, 00:00:00)>”

}

10.1.4.4 Get Reported Issues

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/

Path getIssues

Method GET

Produces application/json

Parameters from headers Authorization => “Basic VVNFUldTOmZ1dHVyZWRvYw==”

token => the Oauth2 access token

Return {

“issues”: [

{

"id": "<internal ID of the issue/request>",

"general": {

"title": "<issue title>",

"description": "<issue description>",

D3.7 Citizen Direct Feedback

66 | P a g e

© Copyright <2019> <ANO>

"dateSent": "<send date (number of milliseconds since January 1,
1970, 00:00:00)>"

},

"state": {

“state”: “<state of the request>”,

“processNumberDisplay”: “<created process number display>”,

“stateMessageId”: “<string ID of the state of the request for
Android>”,

“resolutionMessageId”: “<string iD of the resolution for
Android>”,

“resolutionDate”: “<resolution date (number of milliseconds since
January 1, 1970, 00:00:00)>”

},

"location": {

"latitude": "<latitude>",

"longitude": "<longitude>"

},

"attachments": {

"count": "<number of attachments>",

"attachments": [

{

"id": "<internal ID of the attachment>",

"originalName": "<original file name>",

"size": "<file size (bytes)>",

"dateSent": "<send date (number of milliseconds since
January 1, 1970, 00:00:00)>"

},

...

]

}

},

...

]

}

D3.7 Citizen Direct Feedback

67 | P a g e

© Copyright <2019> <ANO>

10.1.4.5 Download Attachment

Link https://{pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/

Path getAttachment/{id}

Method GET

Produces application/octet-stream

Parameters from headers Authorization => “Basic VVNFUldTOmZ1dHVyZWRvYw==”

token => the Oauth2 access token

Parameters from query Id => internal ID of the attachment

Return The file

10.1.4.6 Base Data

10.1.4.6.1Possible Values for “state”

 DRAFT
 SENT
 PREPARATION
 ACCEPTED
 ACCEPTED ARCHIVED
 ACCEPTED DEFERRED
 ACCEPTED REJECTED
 ACCEPTED DEFERRED ARCHIVED
 ACCEPTED REJECTED ARCHIVED
 ERROR

10.1.4.6.2Possible values for “stateMessageId”

 issue_state_full_DRAFT
 issue_state_full_SENT
 issue_state_full_PREPARATION
 issue_state_full_NOTACCEPTED
 issue_state_full_ACCEPTED
 issue_state_full_ACCEPTED_ARCHIVED
 issue_state_full_ACCEPTED_DEFERRED
 issue_state_full_ACCEPTED_REJECTED
 issue_state_full_ACCEPTED_DEFERRED_ARCHIVED
 issue_state_full_ACCEPTED_REJECTED_ARCHIVED
 issue_state_full_ERROR

D3.7 Citizen Direct Feedback

68 | P a g e

© Copyright <2019> <ANO>

10.1.4.6.3Possible values for “resolutionMessageId”

 issue_resolution_d
 issue_resolution_r

10.1.5 WEB MESSAGES

10.1.5.1 Messages Received

Link https://{pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/getSentWebMe
ssagesByUser

Path api/floodserv/getSentWebMessagesByUser

Type GET

Parameters from headers token

Return JSON (application/json)

{

"count": 2,

"list": [

{

"saveEnabled": true,

"id": 1447,

"entryDate": "11-06-2019 14:17:12",

"type": "NOR",

"wmePrioridade": 0,

"title": "test",

"details": "test_details",

"from": "USER",

"to": "APP",

"haveAttachs": "NO",

"dataOrigin": "GSE_R4",

"read": false

},

{

"saveEnabled": true,

"id": 1446,

"entryDate": "07-06-2019 17:03:29",

D3.7 Citizen Direct Feedback

69 | P a g e

© Copyright <2019> <ANO>

"type": "NOR",

"wmePrioridade": 0,

"title": "OK",

"details": "OK",

"from": "USER",

"to": "APP",

"viewDate": "07-06-2019 17:04:05",

"haveAttachs": "NO",

"read": true

}

]

}

I/O:

@GET

@Path("/getSentWebMessagesByUser")

@Produces(MediaType.APPLICATION_JSON)

PaginationModel<WebMessage> getSentMessages(

@HeaderParam("token") String token,

@DefaultValue("0") @QueryParam("offset") Integer offset,

@DefaultValue("10") @QueryParam("limit") Integer limit,

@DefaultValue("-entryDate") @QueryParam("orderBy") String orderBy,

@QueryParam("filter") String filter

);

10.1.5.2 Messages Sent

Link https://{pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/getSentWebMe
ssagesByUser

Path api/floodserv/getSentWebMessagesByUser

Type GET

Parameters from headers token

Return JSON (application/json)

{

D3.7 Citizen Direct Feedback

70 | P a g e

© Copyright <2019> <ANO>

"count": 2,

"list": [

{

"saveEnabled": true,

"id": 1447,

"entryDate": "11-06-2019 14:17:12",

"type": "NOR",

"wmePrioridade": 0,

"title": "test",

"details": "test_details",

"from": "USER",

"to": "APP",

"haveAttachs": "NO",

"dataOrigin": "GSE_R4",

"read": false

},

{

"saveEnabled": true,

"id": 1446,

"entryDate": "07-06-2019 17:03:29",

"type": "NOR",

"wmePrioridade": 0,

"title": "OK",

"details": "OK",

"from": "USER",

"to": "APP",

"viewDate": "07-06-2019 17:04:05",

"haveAttachs": "NO",

"read": true

}

]

}

Note: The list can be filter as the following example: https://{pilot_instance_name}-floodserv-
saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/getSentWebMessagesByUser?offset=0&li
mit=1.

D3.7 Citizen Direct Feedback

71 | P a g e

© Copyright <2019> <ANO>

I/O:

@GET

@Path("/getSentWebMessagesByUser")

@Produces(MediaType.APPLICATION_JSON)

PaginationModel<WebMessage> getSentMessages(

@HeaderParam("token") String token,

@DefaultValue("0") @QueryParam("offset") Integer offset,

@DefaultValue("10") @QueryParam("limit") Integer limit,

@DefaultValue("-entryDate") @QueryParam("orderBy") String orderBy,

@QueryParam("filter") String filter

);

10.1.5.3 Create New Message

Link https://{pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/createNewWeb
Message

Path api/floodserv/createNewWebMessage

Type POST

Parameters from headers token

Parameters from body JSON (application/json)

{

"title" : "test",

"details" : "test_details"

}

Return JSON (application/json)

{

"saveEnabled": true,

"id": 1447,

"entryDate": "11-06-2019 14:17:12",

"type": "NOR",

"wmePrioridade": 0,

"title": "test",

"details": "test_details",

"from": "USER",

D3.7 Citizen Direct Feedback

72 | P a g e

© Copyright <2019> <ANO>

"to": "APP",

"haveAttachs": "NO",

"dataOrigin": "GSE_R4",

"read": false

}

I/O:

@POST

@Path("/createNewWebMessage")

@Consumes(MediaType.APPLICATION_JSON)

@Produces(MediaType.APPLICATION_JSON)

WebMessage createNewWebMessage(

@HeaderParam("token") String token,

WebMessage wmsg);

D3.7 Citizen Direct Feedback

73 | P a g e

© Copyright <2019> <ANO>

11 APPENDIX I: User Guide

The user guide, in Powerpoint and Video format are available in each instance of the CDF of
each pilot in the following links:

 https://bilbao-floodserv-saas.ano.pt/bilbao/images/CDF_Quick_guide.pptx
 https://bratislava-floodserv-saas.ano.pt/bratislava/images/CDF_Quick_guide.pptx
 https://genova-floodserv-saas.ano.pt/genova/images/CDF_Quick_guide.pptx
 https://tulcea-floodserv-saas.ano.pt/tulcea/images/CDF_Quick_guide.pptx
 https://vnfamalicao-floodserv-saas.ano.pt/vnfamalicao/images/CDF_Quick_guide.pptx

