

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 693599

D4.5 System Integration

Deliverable Report

Project acronym: FLOOD-serv

Project full title:
Public FLOOD Emergency
and Awareness SERvice

Grant agreement no.: 693599

Responsible: SIVECO

Contributors: ANO, ANSWARE, CELLENT, DDNI

Document Reference: D4.5

Dissemination Level: <CO>

Version: Final

Date: 29/11/2019

D4.5 System Integration

2 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Table of contents

Table of contents .. 2

List of figures .. 5

List of tables ... 6

List of abbreviations ... 7

1 Executive summary ... 8

2 Introduction .. 9

2.1 Objectives and Scope ... 9

2.2 Deliverable Type and Target Audience ... 9

2.3 Document Structure... 11

3 Overview of the FLOOD-serv System and Its Architecture .. 12

3.1 The FLOOD-serv System ... 12

3.2 High Level Architecture .. 14

3.3 Extent of Integration .. 15

3.3.1 SSO Integration .. 16

3.3.2 Data Integration ... 16

3.3.3 UI Integration ... 16

4 FLOOD-Serv System Integration .. 17

4.1 Single Sign On and Role Mapping ... 17

4.1.1 SSO Protocol and Solution .. 17

4.1.1.1 SSO Protocol ... 17

4.1.1.2 SSO Solution ... 17

4.1.1.3 Role Mapping ... 17

4.1.1.4 SSO API... 19

4.1.2 Emergency Management Console .. 19

4.1.3 Social Media Component.. 21

4.1.4 FLOOD-serv Semantic Wiki ... 23

4.1.5 Citizen Direct Feedback .. 23

4.1.6 Citizen Direct Feedback Mobile App ... 25

4.1.7 Territory Management System ... 25

4.2 Data Integration ... 25

4.2.1.1 FLOOD-serv Portal .. 25

4.2.1.2 Emergency Management Console .. 27

4.2.1.3 Social Media Component .. 29

D4.5 System Integration

3 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

4.2.1.4 Citizen Direct Feedback Component ... 30

4.2.1.5 Territory Management System ... 32

4.2.1.6 Sensors ... 33

4.2.1.6.1 Internal Sensors .. 33

4.2.1.6.2 External Sensors ... 36

5 Conclusions ... 41

6 References .. 42

APPENDIX I: API Documentations ... 43

Citizen Direct Feedback API ... 43

Introduction .. 43

SYNC Users .. 43

Sync Users ... 44

STATES .. 44

Get a list of processes filtered by date of creation .. 44

Get the list of attachments of a specific process... 45

Get the last version of file of a specific attachment .. 45

Get the last version of file of a specific attachment (in base64) 46

Get list of movements of a process .. 46

Update the status of a specific process .. 47

Get a list of entities .. 47

Get full details on a specific entity ... 48

Base Data .. 48

Available process states ... 48

WEB REQUESTS ... 49

Login User.. 49

Report Issue... 49

Get Issue State ... 50

Get Reported Issues ... 50

Download Attachment ... 52

6.1.1.1 Base Data ... 52

6.1.1.1.1 Possible Values for “state” .. 52

6.1.1.1.2 Possible values for “stateMessageId”.. 52

Possible values for “resolutionMessageId” ... 53

WEB MESSAGES ... 53

Messages Received .. 53

Messages Sent ... 54

Create New Message ... 56

D4.5 System Integration

4 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Territory Management System API .. 57

Introduction .. 57

Depth Analysis ... 58

Get a list of previous analysis filtered by date of creation... 58

Create Analysis .. 59

EMC API .. 59

D4.5 System Integration

5 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

List of figures

Figure 1 : Title of figure Error! Bookmark not defined.

D4.5 System Integration

6 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

List of tables

Table 1 : Title of table Error! Bookmark not defined.

D4.5 System Integration

7 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

List of abbreviations
API Application Programming Interface

CDF Citizen Direct Feedback (component)

DOA Description of Action

EMC Emergency Management Console

OIDC OpenID Connect

SAML 2.0 Security Assertion Markup Language version 2.0

SSO Single Sign On

SW Semantic Wiki (component)

TMS Territory Monitoring Component

UI User Interface

D4.5 System Integration

8 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

1 Executive summary
Executive summary is a term used in business for a short document that summarizes a longer
report, proposal or group of related reports in such a way that readers can rapidly become
acquainted with a large body of material without having to read it all. It will usually contain a
brief statement of the problem or proposal covered in the major document(s), background
information, concise analysis and main conclusions. It is intended as an aid to decision making
by business managers. [1]

<This template for a “Project Name deliverable” contains the items that are necessary for
quality and risk management. The project/WP leader can add his own information on subjects
like “approach” and “planning”. There can be a separate project plan or the items can be part
of a report. The items mentioned in this template have to be agreed upon and accepted at
the start of a work package>

D4.5 System Integration

9 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

2 Introduction

2.1 Objectives and Scope

This document reports on the activities carried out in the FLOOD-serv Project, under Task 4.5
related to FLOOD-serv System Integration. Thus we present the System as a whole, its various
components and modules and the process followed to achieve integration.

2.2 Deliverable Type and Target Audience

The Project Description of Action (DOA) states that deliverable D4.5 type is that of
“Demonstrator”, and its dissemination level is Public. This is why the initial form of D4.5 was
much shorter (not a Report) providing access information for the Portal and the entire
FLOOD-serv System. However, we agree with reviewers’ assessment that in this way essential
“more structured technical information on the developed system” is missing. Therefore,
following the final review, we proceeded with making this deliverable a full report.

Reviewers’ requirements are quite specific about inclusion of detailed technical information.
However, some detailed technical information may be confidential. Given that this
deliverable is defined as Public, we present here public information. Where more detailed
and confidential information is required (e.g. some technical requirements, API calls, etc.)
that information is discussed generically in this report and made available fully in other
revised confidential reports (which will be referenced in this document).

2.3 Changes in Response to Final Review Report

This report was modified in response to the Final Review Report. The following table
describes how the issues raised were addressed in this report or elsewhere.

Reviewers’ observations Explanations as to how observations are
addressed

The document consists of one-page links to
the prototype platform, which in addition do
not work. This form of reporting is not
acceptable as the document does not contain
more structured technical information on the
developed system. Usual professional
practice requires with the delivery of a
software all the necessary documentation
such as Technical Reference Manual, User
Guide, etc...

The DOA defines deliverables D4.4 and D4.5
as of type “Other” and “Demonstrator”
respectively, and not as Reports. Our team
understood that what needed to be provided
is the Portal /Integrated System themselves.

Following your observations, we agree that
the implementation of the Portal and the
Integrated System need more complete
documentation, so we proceeded with
developing these deliverables into full
reports. This report (D4.5) provides
documentation about the FLOOD-serv
System Integration, from a general overview,
to a Component by Component discussion of
SSO integration and Data integration.

User Manuals were now added to
component specific deliverables D3.3, D3.5,

D4.5 System Integration

10 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

D3.6, D3.7 and in the Portal related
deliverable D4.4.

The delivered demonstrator of the integrated
system is rather an empty shell then a
complete prototype system. In fact, the
access of an registered user to the FLOOD-
serv on August 21st, 2019 allows displaying
only a fragmented information from the
testing period instead of a working prototype
based on prepared scenarii, thoroughly
validated by the flood operational services..

Initially the Portal and Components were
developed in a test environment. The initial
deliverables (D3.3-D3.7) and D4.4-D4.5
pointed out to that environment. However,
since that time, before the Piloting the Portal
and Components were implemented in a
production environment. The test
environment is out of date, missing much
content and some components are no longer
available there.

The Piloting deliverables (D5.2-D5.4) pointed
correctly to the production environment
access information.

The updated access information is presented
in Section 3.1, below. (Similarly, deliverables
D3.3, 3.5-3.7, D4.4 were updated to reflect
the changes in access information).

For issues encountered with accessing the
System, the FLOOD-serv Consortium was and
is available to clarify and solve any
difficulties. Please contact us and we will
promptly respond if there are still any issues
encountered.

For cities Bilbao and Bratislava there was not
possible displaying any map showing current
or future weather/inundation situation.

Data reports for the Cities: Bilbao, Bratislava,
Tulcea and Vilanova de Famalicao are
available and fully functional. Given that
data for those reports are collected usually
from other sources (sensors or external data
sources with sensor data, or whether data –
as described in Section 4.2.6), it may happen
that temporarily data may not be available if
the sensor or system from which data is
collected is down. Most of the time,
however, these reports are available.

It is also impossible to test some developed
functions (e.g. Social Media Component or
Territory Monitoring System).

Access to Components (EMC, SMC, TMS, CDF)
can be done by logging in the Portal with
users which have user roles created for public
administrators (e.g. Decision Maker,
Facilitator, etc.). A list of test user names and
passwords (which is confidential information
not to be included in a public report) was
sent separately to the Project Officer to be
shared with Project Monitors.

Assess to public data is not indicated, what is Data sources for the FLOOD-serv System, for

D4.5 System Integration

11 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

in contradiction with D1.5 Data Management
Plan – final Version and Open Research Data
Pilot (ORDP) initiative the project has
declared to follow.

data usually collected by the EMC
Component (which acts as a project data
repository) is described in Section 4.2, and
more specifically in 4.2.6.

Wherever the FLOOD-serv Portal presents
data reports it indicates the source of that
data.

As a result of 3-years project such a public
demonstrator is in total disagreement with
the Project main objectives

While we agree that we did not present all
relevant information, and we are
disappointed that the Project Monitors had
difficulties accessing the FLOOD-serv System
and its Components, we believe that the
System has met the Project’s Objectives.

It should be noted that all Components are
functional, and all user requirements elicited
were implemented and Piloted. The Final
Piloting Report (D5.4) shows that the at the
end all issues, bugs detected and
improvements suggested during piloting
were corrected and all functionalities
were/are in working order.

2.4 Document Structure

In the next Chapter, no. 3, an overview of the FLOOD-serv System is given with the
presentation of the High Level Architecture and the extent of integration of the system.

Chapter 4 discusses in detail the integration of each Component of the System under two
main headings: Single Sign On Integration and Data Integration.

We draw conclusions in Chapter 5.

In APPENDIX I, the documentations of various components’ APIs are provided.

D4.5 System Integration

12 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

3 Overview of the FLOOD-serv System and Its
Architecture

3.1 Access Information

Access to the FLOOD-serv Integrated System is realized through the FLOOD-serv Portal which
acts as a single entry point and SSO for the whole System.

The main Portal URL is: https://floodserv.eu/.

After the user chooses a City and a Language, the user is directed to the URL for the 5
instances of the Portal (corresponding to the five Pilot Cities):

Bilbao: https://bilbao.floodserv.eu/

Bratislava: https://bratislava.floodserv.eu/

Genova: https://genova.floodserv.eu/

Villa Nova de Famalicao: https://vilanovafamalicao.floodserv.eu/

Tulcea: https://tulcea.floodserv.eu/

Any Portal visitor can sign up (i.e. create an account) following the Sign Up procedure,
described in the User Manual in D4.4, APPENDIX I, Section Error! Reference source not
found.. A self created account is given automatically the role of e-citizen.

As a citizen you will not have access to the other components (except for the Semantic Wiki).

To access the other components aimed at public administrators (employees of Pilot Cities), a
set of test user names and passwords have been generated and sent to the Project Officer to
be shared with Project Monitors.

3.2 The FLOOD-serv System

The FLOOD-serv System is a multilanguage, multicomponent, integrated system aimed at
serving citizens and public administrators in various aspects of flood risk management. The
components of the FLOOD-serv System are the following:

1. The FLOOD-serv Portal: is a portal dedicated to citizens of pilot and partner cities
aiming to contribute to flood risk mitigation. It is conceived as a two-way information
gateway; citizens can look up information about floods, or they can submit
information to relevant public authorities in their city, and engage in a dialogue with
them. The FLOOD-serv Portal offers news, multimedia galleries and data-based flood
reports in each of the participating cities. It also contains the FLOOD-serv Semantic
Wiki, providing to citizens and specialists, systematic information about floods.
Citizens can also submit issues and information to public authorities by using the
citizen involvement form . This Portal was developed under the FLOOD-serv Project,
and it is the front end to a series of other information system components developed
in the same project.

2. Citizen Direct Feedback (CDF) module provides a direct communication channel from
the citizens to the respective local authorities, enabling them to more effectively
inform and engage in dialogue with those local authorities of any flood related
information, in terms of risks or prevention. CDF empowers the citizen by allowing

https://floodserv.eu/
https://bilbao.floodserv.eu/
https://bratislava.floodserv.eu/
https://genova.floodserv.eu/
https://vilanovafamalicao.floodserv.eu/
https://tulcea.floodserv.eu/

D4.5 System Integration

13 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

them to alert and discuss with local authorities of any potential flood risks or assess
on prevention policies. CDF is a back office component for use by public employees of
relevant emergency services in the pilot cities. The front office to CDF is implemented
in the Citizen Involvement mobile app and in the Citizen Involvement Form which are
designed for use by citizens. CDF is developed by ANO Software.

3. Emergency Management Console (EMC) can be used as a data visualization or
decision support system dedicated to employees of public authorities involved in
flood emergency management. It receives and monitors relevant data from a variety
of sources, internal to the FLOOD-serv project (from other components e.g. data
submitted by citizens, or based on analysis of satellite pictures, etc) and from external
sources (e.g. meteorological and sensor data). EMC generates various visualizations
of data based on maps and charts, proposes response measures and tracks their
evolution. The EMC receives a Crisis Snapshot of the emergency with the elements
defining the crisis. From the Crisis Snapshot, the EMC analyses the situation of the
crisis and propose a Crisis Action Plan (CAP) a list of operations or activities to be
executed in a timing sequential order making use of the necessary resources to fight
against floods. The tool includes a GIS component, based on PostGIS tools. It has a
User Interface for the visualization and management of the crisis; and a BackEnd
component with an Expert System based based on rules that generates the Crisis
Action Plan of the current emergency. The User Interface is a responsive Web
interface based on React framework and the mobile app is based on React JS. EMC is
developed by Answare Tech, Spain.

4. FLOOD-serv Semantic Wiki (SW) is a semantic wiki containing general information
and knowledge about floods and flood management but also specific and
contextualized knowledge related to the FLOOD-serv Project.The SW is dedicated for
use by both specialists on the one hand, and regular citizens on the other. The entries
in the SW are written in an brief encyclopedic style of definition + further details.
However we aim at keeping the entries rather short, and often the development of
further details are made into other entries. The FLOOD-serv SW is based on
Mediawiki and Semantic Mediawiki technologies. The implementation of the SW
component was done by SIVECO Romania, one of the partners and coordinator of the
FLOOD-serv Project.

5. The Social Media Component (SMC) aims to monitor and provide awareness citizen’s
concerns about flood related issues. It collects, monitors and analyses articles,
opinions, posts about floods from various social media and Web sources, visualizes
and structures them for further analysis. This provides an additional tool for flood
management authorities to be aware of public concerns and sentiment. This assist in
developing longterm strategies and communicate with the citizens efficiently through
multichannel messaging in case of an emergency. This component was developed by
CELLENT.

6. Territory Monitoring System (TMS) is an instrument for producing situational
awareness and risk analysis within a geographical area by means of analysis of
satellite and aerial pictures (from airplanes or drones). By analyzing successive
images, its intelligent processing engine is able to generate reports about relevant
change events related to flood occurrences or impacts, and is able to geographically
localize them. The TMS component receives satellite and/or aerial pictures (taken by
drones or airplanes) and is able to localize and orient them on a digital map of the
area of concern. By analyzing successive pictures, taken at identified times, the TMS is
able to recognize changes in the area and generate exactly localized events. The TMS
intelligent processing engine is also able to classify the nature of the events which
may be related directly to flood events: e.g. enlargement of surface covered by water

D4.5 System Integration

14 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

or the braking of dikes or dams, or related to flood risk: e.g. apparition new elements
like buildings, building sites in at risk areas. The TMS is able to generate periodic
reports (based on periodicity of input pictures collection) and alarms that can be used
by themselves in the TMS Graphical User Interface or exported in a decision support
or emergency management system like EMC. Data generated by TMS is sent for
further analysis to the EMC. TMS is developed by ANO Software.

In addition to the above main components the following should be mentioned:

7. Single Sign On module based on Keycloak technology (further details in Section 4.1,
below), broadly viewed as part of the Portal, but technologically different

8. Sensor module (see Section 4.2.6, below).

3.3 High Level Architecture

Figure 1 below displays the designed high level logical architecture of the FLOOD-serv System,
as presented in D4.3, Section 2.2.

Initial high level logical architecture of the FLOOD-serv System was designed to allow for
many interconnections between components, thus each component (except the Semantic
Wiki) was seen as connecting to both the EMC and the Portal. This was due to not wanting to
lock in interconnectivity design but have an initial design that is flexible and adaptable to
project needs.

The updated final high level description of the FLOOD-serv System is presented in Figure 3,
below. Here are the explanations to the few changes in architecture:

Single sign in
Data

FLOOD-serv Citizen Centric Platform

Semantic

Wiki

Emergency Management
Component

Social Media
Component

Territory
Management
Component

Citizen
Feedback

Component

Sensors and
Open Data

Figure 2: Initial High Level Logical Architecture of the FLOOD-serv System

Figure 1: FLOOD-serv System Designed High Level Logical Architecture

D4.5 System Integration

15 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

 In the implementation phase, more care and analysis was dedicated to which
connections are needed to support the functional specifications of the System and its
components, and only those interconnections were implemented. Thus the following
changes intervened.

 The idea of connecting components to both the EMC and the Portal was dropped.
Usually the EMC was seen as the System’s data repository therefore in most cases
where the Portal needed the same data it would take it from the EMC rather than
directly from other components.

 An exception was CDF which is connecting directly to the Portal due to the fact that
the Portal (through the Citizen Involvement Form) acts as a front office (citizen facing)
interface to citizens.

 A user interface to TMS was implemented in the CDF component, therefore the TMS
connects into CDF

 We now also included the CDF Mobile App and EMC Mobile App into the chart.

3.4 Extent of Integration

In the design and implementation stages we considered three aspects under which
integration of Components could be carried out:

1. Single Sign On;
2. Data Integration; and
3. User Interface Integration.

Figure 3: Final High Level Logical Architecture of the FLOOD-serv System

Single sign in
Data

FLOOD-serv Portal

Semantic

Wiki
Emergency Management

Component

Social Media
Component

Territory
Management
Component

Citizen
Feedback

Component

Sensors and
Open Data

CDF Mobile
app

EMC Mobile
app

D4.5 System Integration

16 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

3.4.1 SSO Integration

Single Sign On integration – represents the integration of components such that from a
functional point of view the user logs in in one place and accesses all areas /Components of
the system to which he should have access given his/her role. This implies a secure sign in and
user management.

It was generally accepted that the FLOOD-serv System needed a Single Sign On system that,
from a user and functional point of view, would simplify user access to the System and its
Components.

The proposed SSO standard was Oauth 2.0, a popular open standard for access delegation,
commonly used as a way for Internet users to grant websites or applications access to their
information on other websites but without giving them the passwords.

3.4.2 Data Integration

Data Integration represents the interconnection between components such that they can
send data from one to another. Data integration was achieved by means of Web services
using data producing component’s API. As explained in Section 3.3, above, which data
interconnections were implemented depended on the functional requirements of the System
and its Components. Data links are visible in Figure 3, above. Details about data integration at
the level of each Component are given in Section 4.2, below.

3.4.3 UI Integration

UI integration refers to the extent to which a system’s several components share the same
interface or not. In the case of the FLOOD-serv System, once again such decision was
subordinated to functional considerations. It was decided that there is no need for full UI
integration for several reasons:

 The Components have a quite distinct identity, each dealing with different aspects of
Flood Risk Management (FRM) (e.g. emergency situation management is quite
different from social media analysis or from obtaining feedback/inputs from citizens);

 There were no specific use cases derived from the User Requirements which needed
the user to go across components. While some extended use cases where the user
may need to go from one component to another can be imagined (e.g. the user
performs some social media analysis, then follows through in the EMC), it still makes
sense to group the functionalities by functional area (social media analysis vs.
emergency management) which is already done by the different identities of the
Components.

 Most components are for use by public administrators, therefore more specialized
users who can be trained to understand the distinct functions of different
components, therefore a seamless integration of the interface is not required;

An exception to the above exists: the FLOOD-serv Portal, in the Engage with public authorities
area, acts as a citizen facing user interface for the CDF Component. This functionality was
dedicated to citizens (and not public administrators), therefore a stricter requirement of this
integration between the two components being seamless existed.

D4.5 System Integration

17 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

4 FLOOD-Serv System Integration

4.1 Single Sign On and Role Mapping

4.1.1 SSO Protocol and Solution

4.1.1.1 SSO Protocol

As stated in the System Architecture deliverable (D4.3), the FLOOD-serv System uses the
Oauth 2.0 protocol for SSO. Oauth 2.0 is an open protocol standard for authorization and
access delegation, commonly used as a way for Internet users to grant websites or
applications access to their information on other websites but without giving them the
passwords.

This protocol allows third-party applications to grant limited access to an HTTP service, either
on behalf of a resource owner or by allowing the third-party application to obtain access on
its own behalf. Access is requested by a client, it can be a website or a mobile application for
example.

In addition the FLOOD-serv Technical partners decided to also use OpenID Connect (OIDC)
which is an authentication layer on top of OAuth 2.0. OIDC allows clients to verify the identity
of a user based on the authentication performed by an authorization server as well as to
obtain profile information about the user in an interoperable and REST-like manner.

4.1.1.2 SSO Solution

The technology of choice for SSO, role mapping and user management was Keycloak which
was installed, customized and configured by Siveco. While initially a PhP implementation of
SSO was considered, it was decided that Keycloak is a more mature solution. This has
triggered a technology change on the Portal side too. Keycloak is an open source identity and
access management solution aimed at modern applications and services. Keycloack supports
protocols like: OpenID Connect, OAuth 2.0, and SAML 2.0.

4.1.1.3 Role Mapping

Role mapping planning took place in successive requirements documents under WP4 (based
also on D3.1 and D3.2). In D4.1 a general mapping between roles and Components was
produced in Chapter 4. We reproduce here in Table 1, below, a table from D4.1.

Table 1: User Roles and Components Access in the FLOOD-serv System

User
Category

Component

User Type

EMC SMC SW TMS CDF
FLOO
D-serv
Portal

N
o

n
-

in
st

it
u

ti
o

n
al

u
se

rs

Unregistered user

 X

E-Citizen

 X X

Certified citizen/ observer X X

D4.5 System Integration

18 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

In
st

it
u

ti
o

n
al

 u
se

rs

Decision Maker

X X X X X

Facilitator (or platform
operator)

X X X X X X

Flood Emergency Expert X X X X X X

Emergency responder X X X X X

Content editor

 X X

System Administrator X X X X X

Further on, in D4.2 we presented more detailed tables showing user roles by each
Component’s functionalities. These remained the reference documents for role mapping
implementation. In the case of the FLOOD-serv Portal, as some functionalities/requirements
were detailed during implementation and updated matrix of this kind was produced and
maintained (in Excel format). A presentation of the access rights to Portal functionalities by
user roles is presented in Table 2, below. (Note the Excel table – available upon request -
contains many more columns referring also to which functionalities are to be implemented
for which Pilot city, plans to pilot in piloting cycles, etc.)

Table 2: User Roles and Access to FLOOD-serv Portal Functionalities

User stories name

U
n

re
gi

st
e

re
d

 u
se

r

E-
C

it
iz

e
n

C
e

rt
if

ie
d

 c
it

iz
e

n
/

o
b

se
rv

e
r

D
e

ci
si

o
n

 M
ak

e
r

Fa
ci

li
ta

to
r

(o
r

p
la

tf
o

rm

o
p

e
ra

to
r)

Fl
o

o
d

 E
m

e
rg

e
n

cy
 E

xp
e

rt

Em
e

rg
e

n
cy

 r
e

sp
o

n
d

e
r

C
o

n
te

n
t

e
d

it
o

r

Sy
st

e
m

 A
d

m
in

is
tr

a
to

r

View newsfeed 1 1 1 1 1 1 1 1 1

Add news 0 0 0 1 1 1 1 1 1

Edit news 0 0 0 1 1 1 1 1 1

Delete news 0 0 0 1 1 1 1 1 1

Share news 1 1 1 1 1 1 1 1 1

View general alarm level 1 1 1 1 1 1 1 1 1

View multimedia galleries 1 1 1 1 1 1 1 1 1

Create new gallery 0 0 0 1 1 1 1 1 1

Edit gallery details 0 0 0 1 1 1 1 1 1

Delete gallery 0 0 0 1 1 1 1 1 1

Upload picture or video into existing gallery 0 0 0 1 1 1 1 1 1

Edit picture or video related details 0 0 0 1 1 1 1 1 1

Delete picture or video from an existing gallery 0 0 0 1 1 1 1 1 1

Visualization of information/reports concerning floods 1 1 1 1 1 1 1 1 1

Communicate flood-related information to authorities 0 1 1 1 1 1 1 1 1

Two way messaging between citizen and public authorities. 0 1 1 1 1 1 1 1 1

View feedback status 0 1 1 1 1 1 1 1 1

View history of feedback submission 0 0 0 0 0 0 0 0 0

Component access 0 0 0 1 1 1 1 1 1

About This Portal 1 1 1 1 1 1 1 1 1

About FLOOD-serv project 1 1 1 1 1 1 1 1 1

About FLOOD-serv components 1 1 1 1 1 1 1 1 1

About Partner Organizations 1 1 1 1 1 1 1 1 1

About Consortium Organizations 1 1 1 1 1 1 1 1 1

Manage FLOOD-serv portal roles 0 0 0 0 0 0 0 0 1

D4.5 System Integration

19 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Log-in/ Single sign-on 1 1 1 1 1 1 1 1 1

Log out 0 1 1 1 1 1 1 1 1

Edit profile 1 1 1 1 1 1 1 1 1

View users list 0 0 0 0 0 0 0 0 1

Add user 0 0 0 0 0 0 0 0 1

Delete users 0 0 0 0 0 0 0 0 1

Inactivate users 0 0 0 0 0 0 0 0 1

Page 0 1 1 1 1 1 1 1 1 1

Home Page 1 1 1 1 1 1 1 1 1

4.1.1.4 SSO API

Documentation related to Keycloak API is available at: https://www.keycloak.org/docs-

api/8.0/rest-api/index.html. The Documentation of API services was transmitted by Siveco to
Technical Partners in charge of Components, for them to implement authentication and rights
in their Components.

4.1.2 Emergency Management Console

The integration of the EMC with the SIVECO SSO was done through a Python module in which
the different messages with the KeyCloak server were implemented through the OpenId
protocol. Among these messages are obtain, renew and validate tokens plus obtain user
information, their roles and their groups.

SIVECO authentication system integrated in the EMC web console (on the left) and in the EMC
app mobile (on the right)

https://www.keycloak.org/docs-api/8.0/rest-api/index.html
https://www.keycloak.org/docs-api/8.0/rest-api/index.html

D4.5 System Integration

20 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Keycloak to create/modify/remove users and groups for each pilot instance

When new user groups are created in the Keycloak system, in the EMC these new user groups
are automatically added.

D4.5 System Integration

21 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

User groups created in the Keycloak and automatically added to the EMC

4.1.3 Social Media Component

The software is web-based and as such does not require any installation on the user apart
from a standard browser. The language of the GUI adjusts automatically following the
browser language.

D4.5 System Integration

22 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

The SMC can be called standalone directly through a browser with a URL. In this case
username / password will be required.

The SMC is also ready for integration with other components using two integration
mechanisms, direct call (URL) and REST-call. This means the SMC can be called from any other
component of the FLOODSERV universe, but also from third party applications such as an
eGov portal of a city. This approach has been chosen to be as flexible as possible.

The GUI initialization is used to enable SSO.

It requires a weblink for direct calling the GUI

The username needs to be added in the HTTP Header of the request. In this case the
username / password entry in the SMC is not necessary and the SMC proceeds directly to the
first screen of the application. By adding the username in the request the SMC invokes the
role assigned to the specific user in the SMC access control database.

The composition of the URL is as follows:

https://socialmedia.cellent.at/socialmedia-client/login?id=[base64 encoded username from the
SMC]

Base64 has been chosen, because it is particularly prevalent on the Web (and therefore a
standard way to include such information in an URL). It is used to include binary assets inside
textual assets such as HTML and CSS files. Base64 is designed to carry data stored in binary
formats across channels that only support text content

Base64 is a group of binary-to-text encoding schemes that represent binary data in an ASCII
string format by translating it into a radix-64 representation. Each Base64 digit represents
exactly 6 bits of data. Three 8-bit bytes (i.e., a total of 24 bits) can therefore be represented
by four 6-bit Base64 digits.

https://socialmedia.cellent.at/socialmedia-client/login?

D4.5 System Integration

23 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Those can be read by the SMC and the checked against the SMC database. The downside is
that the login data are not encrypted, but this is considered less important since the service
to be accessed does not contain confidential data (the raw data are public anyway)

4.1.4 FLOOD-serv Semantic Wiki

The FLOOD-serv Semantic Wiki Component, based on Mediawiki and Semantic Mediawiki
technologies, was integrated with Keycloak for Single Sign On and user management
purposes, using the Keycloak API. When a user tries to enter the Sematic Wiki this component
calls Keycloak to find out user’s information and valid log in token. If the user is logged in the
SW checks against its local list of users and gives access to the corresponding local user. If the
user is new (logs in the SW for the first time) then a corresponding user is created locally and
given access to the SW.

Managing user roles for SW is simple given the business decision that all registered users
should have access to all content of the SW while unregistered users should have only view
access. As such, the SW needs only to know if the user is registered in Keycloak and give
similar access to all roles except unregistered users.

Additional synchronization between the SW on the one side, and Keycloak and the Portal, on
the other side, needed to be made in terms of language preference synchronization.

4.1.5 Citizen Direct Feedback

The CDF backoffice was integrated with the SIVECO SSO through a dedicated module
developed in JAVA and fully integrated with Spring Security (the security layer in the CDF
technological stack). This was achieved using the OpenID protocol for the exchange of
messages, using the serviced API.

When a user tries to login, these are the messages exchanged between CDF and the SIVECO’S
Keycloak:

D4.5 System Integration

24 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

INITIAL REQUEST (1)

1.1 – Redirect to SIVECO to authenticate or get authentication already done

1.2 – Returns “code”

Firstly, when the user tries to enter CDF. it will be redirected to the authentication page of
the authentication server, i.e. the SIVECO'S Keycloack. If this user is already authenticated,
the portal immediately returns the code so that the CDF can continue the entire local
authentication process. If the user is not yet authenticated to SIVECO's then normal
authentication will be requested and then the code will be returned to the requesting
application.

GET TOKEN (2)

2.1 – Request to get token based on the returned code

2.2 – Returns tokens

Once the code has been obtained, we must obtain the token from its returned code.

GET BASE DATA (3)

3.1 – Get Base Data

3.2 – Returns Base Data

After obtaining the token we can invoke the various web services. One is the web service that
returns basic user information, used for the session injection within CDF.

In terms of syncing the user and group database between CDF and SIVECO’ SSO, the CDF uses
a backend procedure to keep its database up to speed, acting as slave and thus treating the
portal as master. Thus, operators for the CDF backoffice are always first created in the portal.

D4.5 System Integration

25 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

4.1.6 Citizen Direct Feedback Mobile App

The CDF mobile app was integrated with the SIVECO SSO through a dedicated module
developed in JAVA. This was achieved using the OpenID protocol for the exchange of
messages, using the serviced API. The same logic used in the CDF Backoffice was applied with
a difference: the CDF App also uses the keycloak method to create a new user, when a citizen
register es through the app.

4.1.7 Territory Management System

The TMS was integrated with the SIVECO SSO through a dedicated module developed in JAVA
and fully integrated with Spring Security (the security layer in the CDF technological stack).
This was achieved using the OpenID protocol for the exchange of messages, using the
serviced API. The same logic/approach from the CDF was used – check sub chapter 4.1.6.

4.2 Data Integration

4.2.1 FLOOD-serv Portal

The FLOOD-serv Portal consumes data from two main sources: EMC and CDF.

The Portal consumes data from the EMC in order to produce a series of data reports aimed at
informing citizens about floods. By going in the Main Menu/Flood Information/Flood reports
or Main Menu/Flood Information/Alarm Level, the user can access such information:

An example of Alarm Level is shown in Figure 4, below.

D4.5 System Integration

26 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Figure 4: Example of Alarm Level Published on the Portal

Examples of data reports are shown in Figure 5 and Figure 6 below.

Figure 5: Example of Water Level Report

D4.5 System Integration

27 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Figure 6: Example of Current Weather Report

To produce these reports the Portal accesses the EMC API, described in 4.2.2, below.

The FLOOD-serv Portal acts also as a citizen facing interface of the CDF Component in relation

to citizen users. Thus the section contains the
Citizen Involvement Form where citizens can signal issues to public authorities and engage in
dialogue with them. To allow citizens to submit information in the Citizen Involvement Form,
generate the Submission History report, or Write Messages, the Portal accesses the CDF API,
as presented in D4.5 APPENDIX I.

4.2.2 Emergency Management Console

EMC consumes data from the Social Media Component (SMC). Specifically, the data
consumed form the SMC are the postings belonged to a specific region of interest.

D4.5 System Integration

28 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Figure 7: Heat map with the social postings (In layers)

Figure 8: Social postings as data source

Nevertheless, after Cellent withdrawn, we lost the permission to access to such data. From
such moment, we decided to simulate such input in the EMC. So in the current version of the
EMC, the social map is a simulation.

On the other hand, the EMC also acts as data producer for the portal. The data provided by
the EMC to the portal is:

 Sensor data

 Data related to flood situation

D4.5 System Integration

29 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

 A list of flood warnings

 Past flood events

 Reports sent by the Emergency Responder

 Missions sent to the ER

 Flood management plan

 Social media content

 You can check the EMC API in the Appendix I.

4.2.3 Social Media Component

The SMC delivers data only, it does not consume data from other components of the

FLOODSERV system.

The SMC integrates a variety of incoming data (messages) for further analysis, namely

a) Social media (Facebook, Twitter)

Typically social media sites of the cities, first responders or politicians

b) Newspapers (RSS)

c) Opinion Maps

They allow a geo-located response and can be embedded in any website or

social media channel.

d) Questionnaires

They allow a structured response. As is the case with the opinion maps they

can also be embedded in any website or social media channel

Both c) and d) are complementing the CDF, the EMC and the related mobile applications.

The picture below shows how the SMC is embedded in the overall citizen communication for

flood risks.

Reactions and comments are collected from various channels and aggregated for

analysis.

 The city officials analyze and subsequently respond directly to social media. The

response could be for example communication on any medium or long-term action planned

and implemented

 Actual implementation resulting from the analysis

D4.5 System Integration

30 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Technically this refers to the retrieval of data stored in the SMC database from other software
components.

Data retrieval is based on REST and the respective output is a JSON string with all relevant
parameters of a posting.

REST stands for “Representational State Transfer”. It is a set of rules that developers follow
when they create their API. One of these rules states that you should be able to get a piece of
data (called a resource) when you link to a specific URL. Each URL is called a request while the
data sent back to you is called a response.

4.2.4 Citizen Direct Feedback Component

The CDF, as a two-way communication component, acts as producer and a received of data
between the portal and the CDF App.

CDF
backoffice

CDF
App

Portal

D4.5 System Integration

31 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

The following links are examples for Bilbao. As shown in the attached file with the full
description of the CDF API, the CDF has a different instance per pilot, so each pilot’s API has
its own link.

As input, the CDF database receives:

1. Issues reported by Citizens and other stakeholders, in the Portal and CDF mobile
application:

 https://bilbao-floodserv-saas.ano.pt/bilbao/services/api/floodserv/report - check Chapter
4.2 of the CDF API Documentation.

2. Messages created in the Portal, also via integration API:

https://bilbao-floodserv-saas.ano.pt/bilbao/services/api/floodserv/createNewWebMessage -
check Chapter 5.3 of the CDF API Documentation.

As output, the CDF component sends:

1. Feedback on the reported issues and full details of the reported issues and created
processes (upon approved issues);

a. This allows to integrate the component with external systems. In the case
of Genova a integration with the SIG system is planned:

For all the issues reported: https://bilbao-floodserv-
saas.ano.pt/bilbao/services/api/floodserv/ getIssues – check Chapter 4.4 of the CDF API
Documentation.

For the processes created: (the approved issues): https://bilbao-floodserv-saas.ano.pt/bilbao
/services/api/records/getProcessesByDate/{date}

2. Messages created in the Backoffice for a specific citizen to the portal;

For sent messages: https://bilbao-floodserv-saas.ano.pt/bilbao
services/api/floodserv/getSentWebMessagesByUser – check Chapter 5.1 of the CDF API
Documentation.

For received messages: https://bilbao-floodserv-saas.ano.pt/bilbao
/services/api/floodserv/getSentWebMessagesByUser

– check Chapter 5.2 of the CDF API Documentation.

3. Broadcast messages to the mobile application;

https://bilbao-floodserv-saas.ano.pt/bilbao/services/api/floodserv/createNewWebMessage

D4.5 System Integration

32 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

The API of the CDF also allows to export/access the following data.

 User/Entities
o https://bilbao-floodserv-saas.ano.pt/bilbao/services/api/persons/ getEntities

– check Chapter 3.7 of the CDF API Documentation.

 Processes
o https://bilbao-floodserv-

saas.ano.pt/bilbao/services/api/records/getProcessesByDate/{date} - check
Chapter 3.1 of the CDF API Documentation.

 Attachments of the Process
o https:// bilbao-floodserv-

saas.ano.pt/bilbao/pilot_contextroot_name}/services/api/attachments/
getAttachments/{id} - check Chapter 3.2 of the CDF API Documentation.

 Movements of the Process
o https://bilbao-floodserv-saas.ano.pt/bilbao/services/api/movements/

getMovementsByProcess/{id} - check Chapter 3.5 of the CDF API
Documentation.

For the rest, of the API’s methods, please consult the CDF API Documentation.

4.2.5 Territory Management System

The TMS receives images as input and exports the results for the PORTAL, EMC and other
components through its API – Please consult Territory Management System API document.

The method to calculate depth is available in the API and returns the calculated depth of the
available image. A method to list all the previous analysis is also available.

Portal/CDF App

List of issues/processes List of messages

CDF

Approve/reject Reply

Portal/CDF App

Issue Message

D4.5 System Integration

33 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

4.2.6 Sensors and External Data

Sensor data used in the FLOOD-serv System is of two general kinds.

1. Internal Sensors: Sensors implemented during the FLOOD-serv Project by members of
the Consortium (namely DDNI and BSK);

2. External Sensors: Sensor data from other sources (usually already in a database and
served through web services).

Both types of sensor data are consumed by the EMC, the first by accessing directly the data
from the sensor server, the second by accessing the data using the API services of external
data providers.

4.2.6.1 Internal Sensors

DDNI purchased a sensor that was mounted on a concrete foundation support installed on
the bank of the Danube cliff, near the institute pontoon.

The information transmitted by the sensors is received on a server installed at the DDNI
headquarters. The server is sending the collected data in txt format on a ftp site (file transfer
protocol) from where Answare can further received it.

The whole system is configured as follows:

The system for monitoring the level of water and temperatures in the well, hereinafter
referred to as the HidroMon or HidroMon system, ensuring centralization over the Internet or
VPN network, can be made available in case of water temperature in drilling, for humidity and
temperature in the AMR module box. They can be centralized from maximum 10,000
measurement points (drilling).

The HidroMon system is composed of:

1. Measuring points (holes) containing:
a. A level sensor that measures the pressure of the pressure column above it and

the water temperature.
b. An AMR module (Automatic meter reading - Automatic sensor reader

automatically) that provides:
i. periodic reading of the level sensor; it reads: the pressure of the water

column and the measuring range of the sensor and high water is calculated
above the sensor; based on the height of the water column and the distance
from the water, measured the installation, calculates the current distance of
the power of the well (water area, in meters:

ii. water temperature, in Celsus degree;
iii. water member, Na (m)
iv. water temperature, Ta (° C);
v. internal humidity (inside the housing), Good (%);

vi. internal temperature (inside the housing), Ti (° C);
vii. battery voltage change, Vbat (V)

2. HidroMon server maintenance program tracking functions: Retrieving the archives
from the AMR module and saving them in logs. The program creates, in the DataPm
folder, for each measurement point, to provide a file with the name of the given
module of the AMR. In this folder he creates the folders: Alarms, Config, Logs and
Reports.

D4.5 System Integration

34 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Each AMR module is connected to GPRS on the daily Hidromon server, at the current time for
data transmission is recorded in the archives.

Technical specification for the Datalogger are as follow:

Table 3: Sensor Technical Specifications

Technical specifications

Modem GSM/GPRS
Quadband,
frequency 850/900/1800/1900 MHz

SIM Card Supports SIM card GPRS / GSM data

Antenna Cable antenna, planar antenna

Transmission
M2M protocol, GSM / GPRS data, transmission to the FTP
server

Housing
Stainless steel (316L), shock resistance, vibration and high
humidity

Antenna connector FME (male), optional adapter

Transfer Interface and connection to the
PC USB standard , optional wireless , RS232 , radio

Power supply
alcaline batteries 2 X 1.5V , optional adapter for 220V or solar
panel

Operating temperature -30°C 85°C

Mechanical protection
Standard IP67 with closed protective cover and sensor
connected, water and dust, IP 68 for 24 hours water and dust

External translator connection input signal 4….20 mA, RS485 , RS232, SDI-12, Modbus, CAN

Data memory

up to 500,000 sets of measured values, non-volatile, data
remains stored even without battery, each measured value is
correlated with time and date

Server
database management, online data visualization, online and
offline configuration

Registered measures

liquid level (pressure), liquid temperature, humidity and
internal temperature protection housing, battery voltage,
signal power, memory space, data transfer date

Data export format ASCII, CSV, XLS, TSV

Data interogation Automatic data interogation, transmission at preset intervals

Transmitted data access security 2 separate levels with username and password

Alarms
local / remote configuration, transmission via SMS or email.
Two configurable thresholds, maximum and minimum

Configuration

size recording interval, data transmission interval, system
name, location, two modes of calibration (groundwater
measurement, watercourse measurement) ,definition of
alarm levels with warning

D4.5 System Integration

35 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Other standard specifications

Diameter 55 mm, length 600 mm;
Data transfer possible without stopping the recording and
without removing it from the installation location;Autonomie
baterie pana la 5 ani la o inregistrare per parametru pe zi si
transmisie date la 24 ore;
remote configuration and modification of
parameters;Continuous temperature and humidity
monitoring in the software; Software available for parameter
configuration, data transfer, offline or online graphical and
table visualization ;Optional software module for data
transfer from the server in custom applications
Optional data acquisition software and programming /
configuration (OS WIN7, WIN8, WIN10) with graphical and
table representation

Technical specifications for level and temperature transducer

Pressure measurement

Pressure measurement field 0 …250 Mh20, 0…25 bar , special or custom domains

Precision 0.03% from the measured domain (FS)

Resolution 0.001 m

Compensation of atmospheric pressure realised in the transmitter

Resoponse time < 1ms from 10…90%

Over pressure 3bar/ 3 X FS (≥ 3 bar)/3 X FS

 Temperature measurement

Temperature measurement range -5…60°C

Precision 0.5°C

Resolution 0.1°C

 General specifications

Operating temperature/storage -5…+80°C/-30°C….+80°C

Mechanical protection IP68

Output signal RS485, Modbus, optional SDI-12, RS232, CAN , 4..20 Ma

Outercase stainless steel (316L)

Data transfer cable and support Standard PUR , optional FEP, PE, up to 400 m

Calibration certificate optional

Standrads and certifications

EN 60068-2-6 Vibrations level : 10gh (4….2000Hz/±10 mmpp)

EN 60068-2-27 Shocks level : 100g (pulse duration 6 ms)

In the case of Tulcea the EMC uses data coming from:

DDNI: Danube Delta National Institute for Research and Development

 The data consumed from them are related to:

 water level of Danube river in Tulcea

 Internal temperature of Danube river in Tulcea

 Internal humidity of Danube river in Tulcea

http://ddni.ro/wps/

D4.5 System Integration

36 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Sensors data integrated in the EMC for Tulcea

Using this information, the different rules implemented in the EMC DSS for the situation of
today1 in Tulcea are:

 If the hourly measured water level (Tulcea) < 220 cm

 If the hourly measured water level (Tulcea) is inside [220, 410) cm

 If the hourly measured water level (Tulcea) is inside [410, 440) cm

 If the hourly measured water level (Tulcea) => 440 cm

4.2.6.2 External Sensors and Data

The EMC consumes sensor data coming from different sources.

In the case of Bilbao, the EMC integrates sensor data coming from the open data portal
GeoEuskadi , which is a partner of the EFAS System and satisfies the EU INSPIRE Directive and
all the National Directives to publish geo-referenced data as part of the “Spatial Data
Infrastructure”.

The data consumed in Bilbao are:

 Water level of the river in Sodupe

 Water level of the river in Bilbao

 Rain level in Sodupe

 Rain level in Bilbao

1 To implement the rules in Tulcea we have followed the recommendations made by DDNI

https://www.geo.euskadi.eus/s69-temas/es

D4.5 System Integration

37 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Sensors data integrated in the EMC for Bibao

Using this information, the different rules implemented in the EMC Decision Support System
(DSS) for the situation of today2 in Bilbao are:

 If the hourly measured rain (Nervion-Ibaizabal|Cadagua-Gueñes) is <

15 l/m2 Then Activate the green emergency level

 If the hourly measured water level (Nervion-Ibaizabal) < 4 m. Then

 Activate the green emergency level

 If the hourly measured water level (Cadagua-Gueñes) < 1.60 m. Then

 Activate the green emergency level

 If the hourly measured rain (Nervion-Ibaizabal|Cadagua-Gueñes) is

inside [15, 30) l/m2 Then Activate the yellow emergency level

 If the hourly measured water level (Nervion-Ibaizabal) is inside

[4, 4.3) m. Then Activate the yellow emergency level

 If the hourly measured water level (Cadagua-Gueñes) is inside

[1.60, 1.90) m. Then Activate the yellow emergency level

 If the hourly measured rain (Nervion-Ibaizabal|Cadagua-Gueñes) is

inside [30, 60) l/m2 Then Activate the orange emergency level

 If the hourly measured water level (Nervion-Ibaizabal) is inside

[4.3, 4.5) m. Then Activate the orange emergency level

 If the hourly measured water level (Cadagua-Gueñes) is inside

[1.90, 2.30) m. Then Activate the orange emergency level

 If the hourly measured rain (Nervion-Ibaizabal|Cadagua-Gueñes) =>

60 l/m2 Then Activate the red emergency level

 If the hourly measured water level (Nervion-Ibaizabal) => 4.5 m.

 Then Activate the red emergency level

 If the hourly measured water level (Cadagua-Gueñes) => 2.30 m.

 Then Activate the red emergency level

And for tomorrow1:

2 To implement these rules we are use the official document: https://1drv.ms/b/s!ApsUzqT-3ft-
01fcOYlL7uL-7GR6?e=dWnjmI

D4.5 System Integration

38 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

 If the daily forecasted rain (Nervion-Ibaizabal|Cadagua-Gueñes) is

< 15 l/m2 Then Activate the green emergeny level

 If the daily forecasted rain (Nervion-Ibaizabal|Cadagua-Gueñes) is

inside [15, 30) l/m2 Then Activate the yellow emergeny level

 If the daily forecasted rain (Nervion-Ibaizabal|Cadagua-Gueñes) is

inside [30, 60) l/m2 Then Activate the orange emergeny level

 If the daily forecasted rain (Nervion-Ibaizabal|Cadagua-Gueñes) =>

60 l/m2 Then Activate the red emergeny level

For the rest of pilots, unfortunately there are not any open data sources which can be
integrated directly in the EMC. Nevertheless, each pilot city has provided different official
web pages which can be used to extract the published data to be integrated in the EMC.

In the case of Bratislava the EMC uses data coming from:

 SHMU: The Slovak Hydrometeorological Institute, which is a data provider of the EFAS

System.

 BSK municipality

The data consumed in Bratislava are related to:

 Water level of the Morava river in Devin

 Water level of the Danube river in Bratislava

 Rain level in Raca

Sensors data integrated in the EMC for Bratislava

Using this information, the different rules implemented in the EMC DSS for the situation of
today in BSK3 are:

 If the hourly measured water level (Danube) < 6,5 m. Then

 Activate the green emergency level

3 To implement the rules in BSK we have followed the recommendation made by BSK and Exdwarf

http://www.shmu.sk/en/?page=1

D4.5 System Integration

39 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

 If the hourly measured water level (Morava) < 4,2 m. Then

 Activate the green emergency level

 If the hourly measured water level (Danube) is inside [6.5, 7.5)

 Then Activate the yellow emergency level

 If the hourly measured water level (Morava) is inside [4.2, 4.6)

 Then Activate the yellow emergency level

 If the hourly measured water level (Danube) is inside [7.5, 8.5)

 Then Activate the yellow emergency level

 If the hourly measured water level (Morava) is inside [4.6, 5.2)

 Then Activate the yellow emergency level

 If the hourly measured water level (Danube) > 8,5 m Then

 Activate the red emergency level

 If the hourly measured water level (river) > 5,2 m Then Activate

the red emergency level

 If the hourly measured rain (Raca) < 5 l/m2 Then Activate the

green emergency level

 If the hourly measured rain (Raca) is inside [5, 20) l/m2 Then

 Activate the yellow emergency level

 If the hourly measured rain (Raca) is inside [20, 50) l/m2 Then

 Activate the orange emergency level

 If the hourly measured rain (Raca) => 50 l/m2 Then Activate

the red emergency level

And for tomorrow3:

 If the daily forecasted rain (Raca) < 5 l/m2 Then Activate

the green emergency level

 If the daily forecasted rain (Raca) is inside [5, 20) l/m2 Then

 Activate the yellow emergency level

 If the daily forecasted rain (Raca) is inside [20, 50) l/m2 Then

 Activate the orange emergency level

 If the daily forecasted rain (Raca) => 50 l/m2 Then Activate

the red emergency level

In the case of Vila Nova the EMC uses data coming from:

 IPMA: The Portuguese Institute of the Sea and the Atmosphere, which is a partner of the

EFAS System. In this case, there are not sensors available. Instead of sensor data, we are

using the official information about the daily flood situation in Vila Nova provided by

IPMA portal. Therefore, the rules implemented in the EMC DSS for this pilot are the

following:

 If Flood situation == green Then Activate the green emergency level

 If Flood situation == yellow Then Activate the green emergency

level

 If Flood situation == orange Then Activate the orange emergency

level

 If Flood situation == red Then Activate the red emergency level

http://www.ipma.pt/pt/oipma/

D4.5 System Integration

40 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

There are not sensor data integrated in the EMC for Tulcea

In this excel it can be checked the different sources from where the EMC obtains the data as
well as the kind of sensor, sensors location, unit of measurement, etc.

https://1drv.ms/x/s!ApsUzqT-3ft-vE6TltP9_5Sb9Kbu?e=gX86SG

D4.5 System Integration

41 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

5 Conclusions
This document presented and documented the Integration of the FLOOD-serv System. The
main content is grouped in Chapters 3 and 4. In Chapter 3 we gave an overview of the FLOOD-
serv System and its high level architecture. In Chapter 4 we present in detail the integration of
components under two aspects: SSO and Role Mapping, and Data Integration. To achieve SSO
and Role Mapping integration, Keycloak technology and OpenID Connect and OAuth 2.0
protocol standards were used. For data integration components access each other
(depending on data needs dictated by functional requirements) usually based on APIs.

The Integration of the FLOOD-serv system posed some technical and logistical problems for
the FLOOD-serv Consortium, particularly the Technical Partners. Bilateral and multilateral
coordination efforts needed to be made by partners at both technical and business level.
However, the challenges were met by the Consortium and integration work was finalized to
be ready for Piloting.

D4.5 System Integration

42 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

6 References

D4.5 System Integration

43 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

APPENDIX I: API Documentations
Appendix includes additional information (if applicable) at the end of the deliverable. If more
than one is necessary, "Appendices" are listed separately. They support the text, although
they include less important information (graphics, tables, images, questionnaires, etc.) that
the reader may refer to if he wants.

Citizen Direct Feedback API

Introduction

The following chapters identify the methods present in the three main areas of the CDF API.
For the URL, each pilot has its own CDF instance:

https://bilbao-floodserv-saas.ano.pt/

https://bratislava-floodserv-saas.ano.pt/

https://genova-floodserv-saas.ano.pt/

https://tulcea-floodserv-saas.ano.pt/

https://vnfamalicao-floodserv-saas.ano.pt/

For the API link, they obey the same logic:

https://{pilot_instance_name}/{pilot_contextroot_name}/services/api/records/

Pilot {pilot_instance_name} {pilot_contextroot_name}

Bilbao bilbao bilbao

Bratislava bratislava bratislava

Genova genova genova

Tulcea tulcea tulcea

Vila Nova de
Famalicão

vnfamalicao vnfamalicao

For example, for the GetProcessesByDate of the STATES API, for Genova the link is:

https//genova-floodserv-saas.ano.pt/genova/services/api/records/getProcessesByDate/

SYNC Users

https://bilbao-floodserv-saas.ano.pt/
https://bratislava-floodserv-saas.ano.pt/
https://genova-floodserv-saas.ano.pt/
https://tulcea-floodserv-saas.ano.pt/
https://vnfamalicao-floodserv-saas.ano.pt/
https://https/tulcea-floodserv-saas.ano.pt/tulcea/services/api/records/getProcessesByDate/20191124

D4.5 System Integration

44 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Sync Users

Link https://
{pilot_instance_name}/{pilot_contextroot_name}/services/api/floodserv/

Path sync

Method POST

Produces text/plain

Parameters from
headers

"Authorization":"Basic Auth”

“Username”: “USERWS”

“Password:” “floodserv123”

Return “OK”

STATES

Get a list of processes filtered by date of creation

Link https:// {pilot_instance_name}-floodserv-
saas.ano.pt/{pilot_contextroot_name}/services/api/records/

Path getProcessesByDate/{date}

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from path date => date in milliseconds

Return [

 {

 "id": <process identifier>,

 "number": <process number>,

 "year": <process year>,

 "description": "<process description>",

 "theme": "<process theme>",

 "creationDate": "<date created in milliseconds>",

 "processedBy": "<username>",

 "status": "<process state>",

 "entityRequester": "<entity name>"

 },

 …

D4.5 System Integration

45 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

]

Get the list of attachments of a specific process

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/attachments/

Path getAttachments/{id}

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from path id => process identifier

Return [

 {

 "id": <attachment identifier>,

 "creationDate": "<date created in milliseconds>",

 "name": "<file name>"

 }

]

Get the last version of file of a specific attachment

Link https://{pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/attachments/

Path getFile/{id}

Method GET

Produces application/octet-stream

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from
path

id => attachment identifier

Return The file

D4.5 System Integration

46 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Get the last version of file of a specific attachment (in base64)

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/attachments/

Path getFileBase64/{id}

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from path id => attachment identifier

Return {

 “data”: “<base64 encoded file content>”

}

Get list of movements of a process

Link https://{pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/movements/

Path getMovementsByProcess/{id}

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from path id => process identifier

Return [

 {

 "id": <movement identifier>,

 "number": <movement number,

 "creationDate": "<date created in milliseconds>",

 "userOrigin": "<origin user>",

 "userDestination": "<destination user>",

 "departmentOrigin": "<origin department>",

 "departmentDestination": "<destination department>",

 “resolutionDate”: “<resolution date in milliseconds>”,

 “resolutionDescription”: “<resolution description>”

 },

 ….

D4.5 System Integration

47 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

]

Update the status of a specific process

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/records/

Path updateState/{id}/{status}

Method POST

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from path id => process identifier

status => the new process state

Return A boolean indicating success or failure

Get a list of entities

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/persons/

Path getEntities

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Return [

 {

 "id": <entity identifier>,

 "name": "<entity name>",

 “number”: “<entity number>”

 },

 …

]

D4.5 System Integration

48 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Get full details on a specific entity

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/persons/

Path getCompleteEntity/{id}

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

Parameters from path id => entity identifier

Return {

 “id”: “<entity identifier>”,

 “name”: “<entity name>”,

 “number”: “<entity number>”,

 “email”: “<entity e-mail>”,

 “phoneNumber”: “<entity phone number>”,

 “birthday”: “<entity birth date in milliseconds>”,

 “address”: {

 “id”: “<address identifier>”,

 “street”: “<street>”,

 “district”: “<district>”,

 “county”: “<county>”,

 “town”: “<town>”,

 “postalCode”: “<postalCode>”

 }

}

Base Data

Available process states

 R - Registry

 P - Pending

 A - Archived

 UA - Unarchived

 S - In follow-up

 DR- Draft

D4.5 System Integration

49 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

WEB REQUESTS

Login User

Link http://195.82.131.198/oauth2_server/public/index.php

Path api/login

Tip POST

Parameter from body email*

password*

Return "token_type"

"expires_in "

“access_token

Report Issue

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/

Path report

Method POST

Consumes multipart/form-data

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZ1dHVyZWRvYw==”

token => the Oauth2 access token

Parameters from body title => title of the issue

description => description of the issue

latitude => latitude (location)

longitude => longitude (location)

attachments => the images and videos, as a list of multipart
attachments named “attachment1”, “attachment2”, etc.

Return {

 “newId”: “<internal ID of the created issue/request>”,

 “state”: “SENT”

}

D4.5 System Integration

50 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Get Issue State

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/

Path getState/{id}

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZ1dHVyZWRvYw==”

token => the Oauth2 access token

Parameters from
query

Id => internal ID of the issue/request

Return {

 “state”: “<state of the request>”,

 “processNumberDisplay”: “<created process number display>”,

 “stateMessageId”: “<string ID of the state of the request for Android>”,

 “resolutionMessageId”: “<string iD of the resolution for Android>”,

 “resolutionDate”: “<resolution date (number of milliseconds since
January 1, 1970, 00:00:00)>”

}

Get Reported Issues

Link https:// {pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/

Path getIssues

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZ1dHVyZWRvYw==”

token => the Oauth2 access token

Return {

 “issues”: [

 {

 "id": "<internal ID of the issue/request>",

 "general": {

 "title": "<issue title>",

D4.5 System Integration

51 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

 "description": "<issue description>",

 "dateSent": "<send date (number of milliseconds since January
1, 1970, 00:00:00)>"

 },

 "state": {

 “state”: “<state of the request>”,

 “processNumberDisplay”: “<created process number display>”,

 “stateMessageId”: “<string ID of the state of the request for
Android>”,

 “resolutionMessageId”: “<string iD of the resolution for
Android>”,

 “resolutionDate”: “<resolution date (number of milliseconds
since January 1, 1970, 00:00:00)>”

 },

 "location": {

 "latitude": "<latitude>",

 "longitude": "<longitude>"

 },

 "attachments": {

 "count": "<number of attachments>",

 "attachments": [

 {

 "id": "<internal ID of the attachment>",

 "originalName": "<original file name>",

 "size": "<file size (bytes)>",

 "dateSent": "<send date (number of milliseconds since
January 1, 1970, 00:00:00)>"

 },

 ...

]

 }

 },

 ...

]

}

D4.5 System Integration

52 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Download Attachment

Link https://{pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/

Path getAttachment/{id}

Method GET

Produces application/octet-stream

Parameters from
headers

Authorization => “Basic VVNFUldTOmZ1dHVyZWRvYw==”

token => the Oauth2 access token

Parameters from
query

Id => internal ID of the attachment

Return The file

6.1.1.1 Base Data

6.1.1.1.1 Possible Values for “state”

 DRAFT

 SENT

 PREPARATION

 ACCEPTED

 ACCEPTED ARCHIVED

 ACCEPTED DEFERRED

 ACCEPTED REJECTED

 ACCEPTED DEFERRED ARCHIVED

 ACCEPTED REJECTED ARCHIVED

 ERROR

6.1.1.1.2 Possible values for “stateMessageId”

 issue_state_full_DRAFT

 issue_state_full_SENT

 issue_state_full_PREPARATION

 issue_state_full_NOTACCEPTED

 issue_state_full_ACCEPTED

 issue_state_full_ACCEPTED_ARCHIVED

 issue_state_full_ACCEPTED_DEFERRED

 issue_state_full_ACCEPTED_REJECTED

 issue_state_full_ACCEPTED_DEFERRED_ARCHIVED

D4.5 System Integration

53 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

 issue_state_full_ACCEPTED_REJECTED_ARCHIVED

 issue_state_full_ERROR

Possible values for “resolutionMessageId”

 issue_resolution_d

 issue_resolution_r

WEB MESSAGES

Messages Received

Link https://{pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/getSentWebMessagesByUse
r

Path api/floodserv/getSentWebMessagesByUser

Type GET

Parameter
s from
headers

token

Return JSON (application/json)

{

 "count": 2,

 "list": [

 {

 "saveEnabled": true,

 "id": 1447,

 "entryDate": "11-06-2019 14:17:12",

 "type": "NOR",

 "wmePrioridade": 0,

 "title": "test",

 "details": "test_details",

 "from": "USER",

 "to": "APP",

 "haveAttachs": "NO",

 "dataOrigin": "GSE_R4",

 "read": false

D4.5 System Integration

54 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

 },

 {

 "saveEnabled": true,

 "id": 1446,

 "entryDate": "07-06-2019 17:03:29",

 "type": "NOR",

 "wmePrioridade": 0,

 "title": "OK",

 "details": "OK",

 "from": "USER",

 "to": "APP",

 "viewDate": "07-06-2019 17:04:05",

 "haveAttachs": "NO",

 "read": true

 }

]

}

I/O:

@GET

@Path("/getSentWebMessagesByUser")

@Produces(MediaType.APPLICATION_JSON)

PaginationModel<WebMessage> getSentMessages(

@HeaderParam("token") String token,

@DefaultValue("0") @QueryParam("offset") Integer offset,

@DefaultValue("10") @QueryParam("limit") Integer limit,

@DefaultValue("-entryDate") @QueryParam("orderBy") String orderBy,

@QueryParam("filter") String filter

);

Messages Sent

Link https://{pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/getSentWebMessagesByUse
r

D4.5 System Integration

55 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

Path api/floodserv/getSentWebMessagesByUser

Type GET

Parameter
s from
headers

token

Return JSON (application/json)

{

 "count": 2,

 "list": [

 {

 "saveEnabled": true,

 "id": 1447,

 "entryDate": "11-06-2019 14:17:12",

 "type": "NOR",

 "wmePrioridade": 0,

 "title": "test",

 "details": "test_details",

 "from": "USER",

 "to": "APP",

 "haveAttachs": "NO",

 "dataOrigin": "GSE_R4",

 "read": false

 },

 {

 "saveEnabled": true,

 "id": 1446,

 "entryDate": "07-06-2019 17:03:29",

 "type": "NOR",

 "wmePrioridade": 0,

 "title": "OK",

 "details": "OK",

 "from": "USER",

 "to": "APP",

 "viewDate": "07-06-2019 17:04:05",

 "haveAttachs": "NO",

D4.5 System Integration

56 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

 "read": true

 }

]

}

Note: The list can be filter as the following example: https://{pilot_instance_name}-floodserv-
saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/getSentWebMessagesByUser?offset=0&li
mit=1.

I/O:

@GET

@Path("/getSentWebMessagesByUser")

@Produces(MediaType.APPLICATION_JSON)

PaginationModel<WebMessage> getSentMessages(

@HeaderParam("token") String token,

@DefaultValue("0") @QueryParam("offset") Integer offset,

@DefaultValue("10") @QueryParam("limit") Integer limit,

@DefaultValue("-entryDate") @QueryParam("orderBy") String orderBy,

@QueryParam("filter") String filter

);

Create New Message

Link https://{pilot_instance_name}-floodserv-saas.ano.pt
/{pilot_contextroot_name}/services/api/floodserv/createNewWebMessage

Path api/floodserv/createNewWebMessage

Type POST

Parameters
from
headers

token

Parameters
from body

JSON (application/json)

{

 "title" : "test",

 "details" : "test_details"

}

Return JSON (application/json)

{

D4.5 System Integration

57 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

 "saveEnabled": true,

 "id": 1447,

 "entryDate": "11-06-2019 14:17:12",

 "type": "NOR",

 "wmePrioridade": 0,

 "title": "test",

 "details": "test_details",

 "from": "USER",

 "to": "APP",

 "haveAttachs": "NO",

 "dataOrigin": "GSE_R4",

 "read": false

}

I/O:

@POST

@Path("/createNewWebMessage")

@Consumes(MediaType.APPLICATION_JSON)

@Produces(MediaType.APPLICATION_JSON)

WebMessage createNewWebMessage(

@HeaderParam("token") String token,

WebMessage wmsg);

Territory Management System API

Introduction

The following chapters identify the methods present in the three main areas of the TMS API.
For the URL, each pilot has its own TMS instance:

https://bilbao-floodserv-saas.ano.pt/

https://bratislava-floodserv-saas.ano.pt/

https://genova-floodserv-saas.ano.pt/

https://tulcea-floodserv-saas.ano.pt/

https://vnfamalicao-floodserv-saas.ano.pt/

https://bilbao-floodserv-saas.ano.pt/
https://bratislava-floodserv-saas.ano.pt/
https://genova-floodserv-saas.ano.pt/
https://tulcea-floodserv-saas.ano.pt/
https://vnfamalicao-floodserv-saas.ano.pt/

D4.5 System Integration

58 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

For the API link, they obey the same logic:

https://{pilot_instance_name}/{pilot_contextroot_name}/services/api/records/

Pilot {pilot_instance_name} {pilot_contextroot_name}

Bilbao bilbao bilbao

Bratislava bratislava bratislava

Genova genova genova

Tulcea tulcea tulcea

Vila Nova de
Famalicão

vnfamalicao vnfamalicao

Depth Analysis

Get a list of previous analysis filtered by date of creation

Link https:// {pilot_instance_name}-floodserv-
saas.ano.pt/{pilot_contextroot_name}/services/api/floodserv/

Path getDepthByDate/{date}

Method GET

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZsb29kc2VydjEyMw==”

token => the Oauth2 access token

Parameters from path date => date in milliseconds

Return [

 {

 "id": < identifier>,

 "depth": <depth>,

 "creationDate": "<date created in milliseconds>",

 "processedBy": "<username>",

D4.5 System Integration

59 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

 },

 …

]

Create Analysis

Link https:// {pilot_instance_name}-floodserv-
saas.ano.pt/{pilot_contextroot_name}/services/api/floodserv/

Path calculateDepth

Method POST

Consumes multipart/form-data

Produces application/json

Parameters from
headers

Authorization => “Basic VVNFUldTOmZ1dHVyZWRvYw==”

token => the Oauth2 access token

Parameters from
body

image => image

Return {

 “newId”: “<internal ID of the created analysis >”,

 “depth”: “<calculated-depth>”

}

EMC API

Regarding to the EMC API, we have different URLs to each API pilot. Below you can find the
data related to Bilbao pilot (although the API is the same for all pilots). The IP is
https://backend.{pilot_name}.floodserv.answare-tech.com. Pilot name could be:

1. bilbao
2. bratislava
3. tulcea
4. vilanova

Using Bilbao as example, the endpoints of the EMC are:

Sensor data:

Sensor list: https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/sensors/

Sensor data: https://backend.bilbao.floodserv.answare-
tech.com/api/emc/v1.0/sensors/{sensor_id}/data/today/

Data related to flood situation:

https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/sensors/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/sensors/%7bsensor_id%7d/data/today/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/sensors/%7bsensor_id%7d/data/today/

D4.5 System Integration

60 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

its Points of Interest (PoIs): https://backend.bilbao.floodserv.answare-
tech.com/api/emc/v1.0/custompoi/?type=School (the types are Hospital, School, other)

its daily measured weather

 https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/weather/

Its daily weather forecast for next days:

 https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/weather/forecast/

Its daily flood situation: https://backend.bilbao.floodserv.answare-
tech.com/api/emc/v1.0/emergencies/current/ (now returns an array of emergencies)

A list of flood warnings:

 https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/warning/

Past flood events:

 https://backend.bilbao.floodserv.answare-tech.com /api/emc/v1.0/emergencies/

Reports sent by the Emergency Responder (ER):

 https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/reports/ (now returns
reports associated to active emergencies)

Parameters:

confirmed: optional. Values: 1: returns only confirmed reports of active emergencies. 0:
returns only unconfirmed reports of active emergencies.

emergency_id: optional: returns the missions associated to the emergency with this id.

Example of use https://backend.bilbao.floodserv.answare-
tech.com/api/emc/v1.0/reports/?confirmed=1

Missions sent to the ER:

 https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/missions/ (now returns
missions associated to active emergencies)

Parameters:

confirmed: optional. Values: 1: returns only confirmed missions of active emergencies. 0:
returns only unconfirmed missions of active emergencies.

emergency_id: optional: returns the missions associated to the emergency with this id.

Example of use https://backend.bilbao.floodserv.answare-
tech.com/api/emc/v1.0/missions/?emergency_id=1&confirmed=0

Flood management plan:

 https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/documents/ .

 https://backend.bilbao.floodserv.answare-
tech.com/api/emc/v1.0/documents/{document_id}

Social media content:

 https://socialmedia.cellent.at/fupol-
services/rest/public/Campaign/findPosts?source=OpinionMap&latitudeFrom=43.2&longitude

https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/custompoi/?type=School
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/custompoi/?type=School
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/weather/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/weather/forecast/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/emergencies/current/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/emergencies/current/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/warning/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/reports/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/reports/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/reports/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/missions/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/missions/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/missions/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/documents/
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/documents/%7bdocument_id%7d
https://backend.bilbao.floodserv.answare-tech.com/api/emc/v1.0/documents/%7bdocument_id%7d
https://socialmedia.cellent.at/fupol-services/rest/public/Campaign/findPosts?source=OpinionMap&latitudeFrom=43.2&longitudeFrom=-3&latitudeTo=43.35&longitudeTo=-2.5
https://socialmedia.cellent.at/fupol-services/rest/public/Campaign/findPosts?source=OpinionMap&latitudeFrom=43.2&longitudeFrom=-3&latitudeTo=43.35&longitudeTo=-2.5

D4.5 System Integration

61 | P a g e

© Copyright 2019 the FLOOD-serv Consortium

From=-3&latitudeTo=43.35&longitudeTo=-2.5 (in order to access to this data you need to
request access to Peter.Sonntagbauer@cellent.at)

All the data related to regions of interest and point of interest produced by the EMC follow
the geoJSON format.

For each pilot, there is a mandatory header: the Authorization Bearer <API KEY>

Pilot API KEY

Bilbao a06d2358cf995a595a16faed142304f9fd2f024e

Bratislava 0209bb403da8d885547d9f34419ad9066e096be8

Tulcea 138e8f3abac7ff233eaf02f798a5f9cc3b15284c

Vilanova 0a879320eb07e2dc1b270e78bc3b02b77ff1f2cf

https://socialmedia.cellent.at/fupol-services/rest/public/Campaign/findPosts?source=OpinionMap&latitudeFrom=43.2&longitudeFrom=-3&latitudeTo=43.35&longitudeTo=-2.5
mailto:Peter.Sonntagbauer@cellent.at
http://geojson.org/

	Table of contents
	List of figures
	List of tables
	List of abbreviations
	1 Executive summary
	2 Introduction
	2.1 Objectives and Scope
	2.2 Deliverable Type and Target Audience
	2.3 Changes in Response to Final Review Report
	2.4 Document Structure

	3 Overview of the FLOOD-serv System and Its Architecture
	3.1 Access Information
	3.2 The FLOOD-serv System
	3.3 High Level Architecture
	3.4 Extent of Integration
	3.4.1 SSO Integration
	3.4.2 Data Integration
	3.4.3 UI Integration

	4 FLOOD-Serv System Integration
	4.1 Single Sign On and Role Mapping
	4.1.1 SSO Protocol and Solution
	4.1.1.1 SSO Protocol
	4.1.1.2 SSO Solution
	4.1.1.3 Role Mapping
	4.1.1.4 SSO API

	4.1.2 Emergency Management Console
	4.1.3 Social Media Component
	4.1.4 FLOOD-serv Semantic Wiki
	4.1.5 Citizen Direct Feedback
	4.1.6 Citizen Direct Feedback Mobile App
	4.1.7 Territory Management System

	4.2 Data Integration
	4.2.1 FLOOD-serv Portal
	4.2.2 Emergency Management Console
	4.2.3 Social Media Component
	4.2.4 Citizen Direct Feedback Component
	4.2.5 Territory Management System
	4.2.6 Sensors and External Data
	4.2.6.1 Internal Sensors
	4.2.6.2 External Sensors and Data

	5 Conclusions
	6 References
	APPENDIX I: API Documentations
	Citizen Direct Feedback API
	Introduction
	SYNC Users
	Sync Users

	STATES
	Get a list of processes filtered by date of creation
	Get the list of attachments of a specific process
	Get the last version of file of a specific attachment
	Get the last version of file of a specific attachment (in base64)
	Get list of movements of a process
	Update the status of a specific process
	Get a list of entities
	Get full details on a specific entity
	Base Data
	Available process states

	WEB REQUESTS
	Login User
	Report Issue
	Get Issue State
	Get Reported Issues
	Download Attachment
	6.1.1.1 Base Data
	6.1.1.1.1 Possible Values for “state”
	6.1.1.1.2 Possible values for “stateMessageId”
	Possible values for “resolutionMessageId”

	WEB MESSAGES
	Messages Received
	Messages Sent
	Create New Message

	Territory Management System API
	Introduction
	Depth Analysis
	Get a list of previous analysis filtered by date of creation
	Create Analysis

	EMC API

